25 research outputs found

    CELL DEATH AND AUTOPHAGY: CYTOKINES, DRUGS, AND NUTRITIONAL FACTORS

    Get PDF
    Cellsmay use multiple pathways to commit suicide. In certain contexts, dying cells generate large amounts of autophagic vacuoles and clear large proportions of their cytoplasm, before they finally die, as exemplified by the treatment of human mammary carcinoma cells with the anti-estrogen tamoxifen (TAM, ≤1 M). Protein analysis during autophagic cell death revealed distinct proteins of the nuclear fraction including GST- and some proteasomal subunit constituents to be affected during autophagic cell death. Depending on the functional status of caspase-3, MCF-7 cells may switch between autophagic and apoptotic features of cell death [Fazi, B., Bursch,W., Fimia, G.M., Nardacci R., Piacentini, M., Di Sano, F., Piredda, L., 2008. Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy 4(4), 435–441]. Furthermore, the self-destruction of MCF-7 cells was found to be completed by phagocytosis of cell residues [Petrovski, G., Zahuczky, G., Katona, K., Vereb, G., Martinet,W., Nemes, Z., Bursch,W., Fésüs, L., 2007. Clearance of dying autophagic cells of different origin by professional and non-professional phagocytes. Cell Death Diff. 14 (6), 1117–1128]. Autophagy also constitutes a cell’s strategy of defense upon cell damage by eliminating damaged bulk proteins/organelles. This biological condition may be exemplified by the treatment of MCF-7 cells with a necrogenic TAM-dose (10 M), resulting in the lysis of almost all cells within 24 h. However, a transient (1 h) challenge of MCF-7 cells with the same dose allowed the recovery of cells involving autophagy. Enrichment of chaperones in the insoluble cytoplasmic protein fraction indicated the formation of aggresomes, a potential trigger for autophagy. In a further experimental model HL60 cells were treated with TAM, causing dose-dependent distinct responses: 1–5 MTAM, autophagy predominant; 7–9 M, apoptosis predominant; 15 M, necrosis. These phenomena might be attributed to the degree of cell damage caused by tamoxifen, either by generating ROS, increasing membrane fluidity or forming DNA-adducts. Finally, autophagy constitutes a cell’s major adaptive (survival) strategy in response to metabolic challenges such as glucose or amino acid deprivation, or starvation in general. Notably, the role of autophagy appears not to be restricted to nutrient recycling in order to maintain energy supply of cells and to adapt cell(organ) size to given physiological needs. For instance, using a newly established hepatoma cell line HCC-1.2, amino acid and glucose deprivation revealed a pro-apoptotic activity, additive to TGF- 1. The proapoptotic action of glucose deprivation was antagonized by 2-deoxyglucose, possibly by stabilizing the mitochondrial membrane involving the action of hexokinase II. These observations suggest that signaling cascades steering autophagy appear to provide links to those regulating cell number. Taken together, our data exemplify that a given cell may flexibly respond to type and degree of (micro)environmental changes or cell death stimuli; a cell’s response may shift gradually from the elimination of damaged proteins by autophagy and the recovery to autophagic or apoptotic pathways of cell death, the failure of which eventually may result in necrosis

    A preliminary study in Wistar rats with enniatin : A contaminated feed

    Get PDF
    A 28-day repeated dose preliminary assay, using enniatin A naturally contaminated feed through microbial fermentation by a Fusarium tricinctum strain, was carried out employing two months-old female Wistar rats as in vivo experimental model. In order to simulate a physiological test of a toxic compound naturally produced by fungi, five treated animals were fed during twenty-eight days with fermented feed. As control group, five rats were fed with standard feed. At the 28th day, blood samples were collected for biochemical analysis and the gastrointestinal tract, liver and kidneys were removed from each rat for enniatin A detection and quantitation. Digesta were collected from stomach, duodenum, jejunum, ileum and colon. Enniatin A present in organs and in biological fluids was analyzed by liquid chromatography-diode array detector (LC-DAD) and confirmed by LC-mass spectrometry linear ion trap (MS-LIT); also several serum biochemical parameters and a histological analysis of the duodenal tract were performed. No adverse effects were found in any treated rat at the enniatin A concentration (20.91 mg/kg bw/day) tested during the 28-day experiment. Enniatin A quantitation in biological fluids ranged from 1.50 to 9.00 mg/kg, whereas in the gastrointestinal organs the enniatin A concentration ranged from 2.50 to 23.00 mg/kg. The high enniatin A concentration found in jejunum liquid and tissue points to them as an absorption area. Finally, two enniatin A degradation products were identified in duodenum, jejunum and colon content, probably produced by gut microflora

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Worms take to the slo lane: a perspective on the mode of action of emodepside

    Get PDF
    The cyclo-octapdepsipeptide anthelmintic emodepside exerts a profound paralysis on parasitic and free-living nematodes. The neuromuscular junction is a significant determinant of this effect. Pharmacological and electrophysiological analyses in the parasitic nematode Ascaris suum have resolved that emodepside elicits a hyperpolarisation of body wall muscle, which is dependent on extracellular calcium and the efflux of potassium ions. The molecular basis for emodepside’s action has been investigated in forward genetic screens in the free-living nematode Caenorhabditis elegans. Two screens for emodepside resistance, totalling 20,000 genomes, identified several mutants of slo-1, which encodes a calcium-activated potassium channel homologous to mammalian BK channels. Slo-1 null mutants are more than 1000-fold less sensitive to emodepside than wild-type C. elegans and tissue-specific expression studies show emodepside acts on SLO-1 in neurons regulating feeding and motility as well as acting on SLO-1 in body wall muscle. These genetic data, combined with physiological measurements in C. elegans and the earlier physiological analyses on A. suum, define a pivotal role for SLO-1 in the mode of action of emodepside. Additional signalling pathways have emerged as determinants of emodepside’s mode of action through biochemical and hypothesis-driven approaches. Mutant analyses of these pathways suggest a modulatory role for each of them in emodepside’s mode of action; however, they impart much more modest changes in the sensitivity to emodepside than mutations in slo-1. Taken together these studies identify SLO-1 as the major determinant of emodepside’s anthelmintic activity. Structural information on the BK channels has advanced significantly in the last 2 years. Therefore, we rationalise this possibility by suggesting a model that speculates on the nature of the emodepside pharmacophore within the calcium-activated potassium channels

    Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead

    Get PDF
    Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety ‘Mode of Action’ framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology

    Impact of terminal dimethylation on the resistance profile of α-N-heterocyclic thiosemicarbazones

    No full text
    Triapine is an α-N-heterocyclic thiosemicarbazone with promising anticancer activity against hematologic malignancies but widely ineffective against solid tumor types in clinical trials. The anticancer activity of thiosemicarbazones can be dramatically increased by terminal dimethylation. KP1089 is a gallium compound containing two terminal dimethylated thiosemicarbazone ligands. To gain insights on the vulnerability of this highly active terminal dimethylated thiosemicarbazone to drug resistance mechanisms, a new cell model with acquired resistance against the lead compound KP1089 was established. Subsequent genomic analyses (arrayCGH and FISH) revealed amplification of the ABCC1 gene on double minute chromosomal DNA in KP1089-resistant cells as well as overexpression of ABCC1 and ABCG2 on the protein level. KP1089 was further confirmed as a substrate of ABCC1 and ABCG2 but not of ABCB1 using a panel of ABC transporter-overexpressing cell models as well as ABC transporter inhibitors. Moreover, glutathione depletion strongly enhanced KP1089 activity, although no glutathione conjugate formation by glutathione-S-transferase was observed. Thus, a co-transport of KP1089 together with glutathione is suggested. Finally, a panel of thiosemicarbazone derivatives was tested on the new KP1089-resistant cell line. Notably, KP1089-resistant cells were not cross-resistant against thiosemicarbazones lacking terminal dimethylation (e.g. Triapine) which are less active than KP1089. This suggests that terminal dimethylation of thiosemicarbazones – linked with distinctly enhanced anticancer activity – leads to altered resistance profiles compared to classical thiosemicarbazones making this compound class of interest for further (pre)clinical evaluation
    corecore