101 research outputs found

    PRS17 VALIDATION OF THE COPD SEVERITY SCORE FOR USE IN THE SPANISH PRIMARY HEALTH CARE SYSTEM, THE NEREA STUDY: PRELIMINARY RESULTS

    Get PDF

    Ratio of the Dead to Wounded (D/W) Indicators and Associated Factors in Major Earthquakes of America from 1960 to 2011

    Get PDF
    Corrigendum to “Ratio of the Dead to Wounded (D/W) Indicators and Associated Factors in Major Earthquakes of America from 1960 to 2011”. Journal of Earthquakes 2015; 436960, http://dx.doi.org/10.1155/2015/436960.The paper presented deals with the casualties, mortality, and morbidity occurred during the major earthquakes of America during a period of 51 years. The work provides statistical evidence that the deaths/wounded (D/W) ratio used for many agencies in the planning of the preparation and response activities to earthquakes does not fit the relation 1 : 3. In addition, a model is presented in order to evaluate the possible association between different analysis variables such as the subregion of the American continent affected, population density, HDI, and the time and magnitude of the earthquake and the effects of these on the death toll, the number of the wounded, and the D/W indexes. Although the model generated it is not robust enough for decision making, it could be useful and improvable in order to apply it in the planning and management of these kinds of natural disasters. For these reasons, we think that it would be interesting to do further progress in this line of research by making a more comprehensive study of the variables associated with mortality and morbidity, using a more representative sample of earthquakes that sure will confirm the results presented in this work.This work was funded by the Spanish Field Epidemiology Training Program and was done as part of research activities of Ana Ayuso-Alvárez, M.S., Marcello S. Rossi S., D.S., and Dante Culqui, M.S., in the Spanish Field Epidemiology Training Program.S

    Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium

    Get PDF
    Understanding natural climate variability and its driving factors is crucial to assessing future climate change. Therefore, comparing proxy-based climate reconstructions with forcing factors as well as comparing these with paleo-climate model simulations is key to gaining insights into the relative roles of internal versus forced variability. A review of the state of modelling of the climate of the last millennium prior to the CMIP5-PMIP3 (Coupled Model Intercomparison Project Phase 5-Paleoclimate Modelling Intercomparison Project Phase 3) coordinated effort is presented and compared to the available temperature reconstructions. Simulations and reconstructions broadly agree on reproducing the major temperature changes and suggest an overall linear response to external forcing on multidecadal or longer timescales. Internal variability is found to have an important influence at hemispheric and global scales. The spatial distribution of simulated temperature changes during the transition from the Medieval Climate Anomaly to the Little Ice Age disagrees with that found in the reconstructions. Thus, either internal variability is a possible major player in shaping temperature changes through the millennium or the model simulations have problems realistically representing the response pattern to external forcing. A last millennium transient climate response (LMTCR) is defined to provide a quantitative framework for analysing the consistency between simulated and reconstructed climate. Beyond an overall agreement between simulated and reconstructed LMTCR ranges, this analysis is able to single out specific discrepancies between some reconstructions and the ensemble of simulations. The disagreement is found in the cases where the reconstructions show reduced covariability with external forcings or when they present high rates of temperature change

    Angioedema severity and impact on quality of life: Chronic histaminergic angioedema versus chronic spontaneous urticaria

    Get PDF
    Histamine-mediated angioedema is the most frequent form of angioedema. It is classified as idiopathic histaminergic acquired angioedema (IH-AAE)1 when allergies and other causes have been excluded and a positive treatment response to antihistamines, corticosteroids, or omalizumab has been reported. Idiopathic histaminergic acquired angioedema may occur in isolation, when it is termed chronic histaminergic angioedema (CHA), or it may be associated with wheals in chronic spontaneous urticaria angioedema (CSU-AE). The term CHA is equivalent to IH-AAE and mast cell-mediated angioedema. However, this term reflects the chronic and recurrent course of the disease. Therefore, we propose that the term CHA be internationally discussed in the following guidelines. Chronic spontaneous urticaria is classically characterized by the presence of recurrent episodes of wheals (hives) with or without angioedema for at least 6 weeks.2 Chronic histaminergic angioedema is typically considered a subtype of CSU without wheals. However, a recent study3 found several features that differentiate CHA from CSU, which suggests that CHA is a separate entity. Quality of life (QoL) studies specifically for CHA patients have not been performed, and their QoL has been assessed only in the context of CSU-AE

    European summer temperatures since Roman times

    Get PDF
    The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding frequency and severity in the long-term perspective. Recent initiatives have expanded the number of high-quality proxy-records and developed new reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. We provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer temperature fields back to 755 CE based on a Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on Composite-plus-Scaling. Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Temperature differences between the medieval period, the recent period and Little Ice Age are larger in reconstructions than simulations. This may indicate either inflated variability of the reconstructions, a lack of sensitivity to external forcing on sub-hemispheric scales in the climate models and/or an underestimation of internal variability on centennial and longer time scales including the representation of internal feedback mechanisms

    The PMIP4 contribution to CMIP6 – Part 1: overview and over-arching analysis plan

    Get PDF
    This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (Otto-Bliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) – Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21 000 years ago (lgm); the Last Interglacial, 127 000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records, with climate and environmental changes relevant for the study and projection of future climate changes. This paper describes the motivation for the choice of these periods and the design of the numerical experiments and database requests, with a focus on their novel features compared to the experiments performed in previous phases of PMIP and CMIP. It also outlines the analysis plan that takes advantage of the comparisons of the results across periods and across CMIP6 in collaboration with other MIPs

    Forzamiento externo, respuesta térmica y sensibilidad climática en simulaciones y reconstrucciones del último milenio

    Get PDF
    Ponencia presentada en: XXXII Jornadas Científicas de la AME y el XIII Encuentro Hispano Luso de Meteorología celebrado en Alcobendas (Madrid), del 28 al 30 de mayo de 2012.El presente trabajo analiza un conjunto de 26 simulaciones forzadas procedentes de 8 modelos climáticos acoplados de atmósfera y océano (del inglés, AOGCMs) para el último milenio

    Separating Forced from Chaotic Climate Variability over the Past Millennium

    Get PDF
    Reconstructions of past climate show notable temperature variability over the past millennium, with relatively warm conditions during the Medieval Climate Anomaly (MCA) and a relatively cold Little Ice Age (LIA). Multimodel simulations of the past millennium are used together with a wide range of reconstructions of Northern Hemispheric mean annual temperature to separate climate variability from 850 to 1950 CE into components attributable to external forcing and internal climate variability. External forcing is found to contribute significantly to long-term temperature variations irrespective of the proxy reconstruction, particularly from 1400 onward. Over the MCA alone, however, the effect of forcing is only detectable in about half of the reconstructions considered, and the response to forcing in the models cannot explain the warm conditions around 1000 CE seen in some reconstructions. The residual from the detection analysis is used to estimate internal variability independent from climate modeling, and it is found that the recent observed 50- and 100-yr hemispheric temperature trends are substantially larger than any of the internally generated trends even using the large residuals over the MCA. Variations in solar output and explosive volcanism are found to be the main drivers of climate change from 1400 to 1900, but for the first time a significant contribution from greenhouse gas variations to the cold conditions during 1600-1800 is also detected. The proxy reconstructions tend to show a smaller forced response than is simulated by the models. This discrepancy is shown, at least partly, to be likely associated with the difference in the response to large volcanic eruptions between reconstructions and model simulations
    corecore