400 research outputs found

    Interactive deformation and visualization of level set surfaces using graphics hardware

    Get PDF
    technical reportDeformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization for applications such as segmentation, surface process- ing, and surface reconstruction. Their usefulness has been limited, however, by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters that can be difficult to tune correctly for specific applications. The second problem is compounded by the first. This paper presents a solution to these challenges by describing graphics processor (GPU) based algorithms for solving and visualizing level-set solutions at interactive rates. Our efficient GPU- based solution relies on packing the level-set isosurface data into a dynamic, sparse texture format. As the level set moves, this sparse data structure is updated via a novel GPU to CPU message passing scheme. When the level-set solver is integrated with a real-time volume renderer operating on the same p

    A GPU-based, three-dimensional level set solver with curvature flow

    Get PDF
    technical reportLevel set methods are a powerful tool for implicitly representing deformable surfaces. Since their inception, these techniques have been used to solve prob- lems in fields as varied as computer vision, scientific visualization, computer graphics and computational physics. With the power and flexibility of this approach; however, comes a large computational burden. In the level set ap- proach, surface motion is computed via a partial differential equation (PDE) framework. One possibility for accelerating level-set based applications is to map the solver kernel onto a commodity graphics processing unit (GPU). GPUs are parallel, vector computers whose power is currently increasing at a faster rate than that of CPUs. in this work, we demonstrate a GPU-based, three- dimensional level set solver that is capable of computing curvature flow as well as other speed terms. Results are shown for this solver segmenting the brain surface from an MRI data set

    Interactive, GPU-based level sets for 3D brain tumor segmentation

    Get PDF
    technical reportWhile level sets have demonstrated a great potential for 3D medical image seg- mentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper presents a tool for 3D segmenta- tion that relies on level-set surface models computed at interactive rates on commodity graphics cards (GPUs). The mapping of a level-set solver to a GPU relies on a novel mechanism for GPU memory management. The interactive rates for solving the level- set PDE give the user immediate feedback on the parameter settings, and thus users can tune three separate parameters and control the shape of the model in real time. We have found that this interactivity enables users to produce good, reliable segmen- tations. To support this observation, this paper presents qualitative and quantitative results from a study of brain tumor segmentation

    Interactive deformation and visualization of level set surfaces using graphics hardware

    Get PDF
    Journal ArticleDeformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization for applications such as segmentation, surface processing, and surface reconstruction. Their usefulness has been limited, however, by their high computational cost and and reliance on significant parameter tuning. This paper presents a solution to these challenges by describing graphics processor (GPU) based algorithms for solving and visualizing levelset solutions at interactive rates. Our efficient GPU-based solution relies on packing the level-set isosurface data into a dynamic, sparse texture format. As the level set moves, this sparse data structure is updated via a novel GPU to CPU message passing scheme. When the level-set solver is integrated with a real-time volume renderer operating on the same packed format, a user can visualize and steer the deformable level-set surface as it evolves. In addition, the resulting isosurface can serve as a region-of-interest specifier for the volume renderer. This paper demonstrates the capabilities of this technology for interactive volume visualization and segmentation

    Guest Artist Series:Kevin Lefohn, Violin Terence Dennis, Piano

    Get PDF
    Kemp Recital Hall Thursday Evening February 10, 2005 8:00p.m

    Streaming narrow-band algorithm: interactive computation and visualization of level sets

    Get PDF
    Journal ArticleAbstract-Deformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization and computer graphics for applications such as segmentation, surface processing, and physically-based modeling. Their usefulness has been limited, however, by their high computational cost and reliance on significant parameter tuning. This paper presents a solution to these challenges by describing graphics processor (GPU) based algorithms for solving and visualizing level-set solutions at interactive rates. The proposed solution is based on a new, streaming implementation of the narrow-band algorithm. The new algorithm packs the level-set isosurface data into 2D texture memory via a multidimensional virtual memory system. As the level set moves, this texturebased representation is dynamically updated via a novel GPU-to-CPU message passing scheme. By integrating the level-set solver with a real-time volume renderer, a user can visualize and intuitively steer the level-set surface as it evolves. We demonstrate the capabilities of this technology for interactive volume segmentation and visualization

    Implementation of digital pheromones in PSO accelerated by commodity Graphics Hardware

    Get PDF
    In this paper, a model for Graphics Processing Unit (GPU) implementation of Particle Swarm Optimization (PSO) using digital pheromones to coordinate swarms within ndimensional design spaces is presented. Previous work by the authors demonstrated the capability of digital pheromones within PSO for searching n-dimensional design spaces with improved accuracy, efficiency and reliability in both serial and parallel computing environments using traditional CPUs. Modern GPUs have proven to outperform the number of floating point operations when compared to CPUs through inherent data parallel architecture and higher bandwidth capabilities. The advent of programmable graphics hardware in the recent times further provided a suitable platform for scientific computing particularly in the field of design optimization. However, the data parallel architecture of GPUs requires a specialized formulation for leveraging its computational capabilities. When the objective function computations are appropriately formulated for GPUs, it is theorized that the solution efficiency (speed) can be significantly increased while maintaining solution accuracy. The development of this method together with a number of multi-modal unconstrained test problems are tested and presented in this paper

    Interhemispheric differences in seasonal cycles of tropospheric ozone in the marine boundary layer: observation - model comparisons:Seasonal ozone cycles

    Get PDF
    Marine boundary layer ozone seasonal cycles have been quantified by fitting the sum of two sine curves through monthly detrended observations taken at three stations: Mace Head, Ireland, and Trinidad Head, California, in the Northern Hemisphere and Cape Grim, Tasmania, in the Southern Hemisphere. The parameters defining the sine curve fits at these stations have been compared with those from a global Lagrangian chemistry-transport model and from 14 Atmospheric Chemistry Coupled Climate Model Intercomparison Project chemistry-climate models. Most models substantially overestimated the long-term average ozone levels at Trinidad Head, while they performed much better for Mace Head and Cape Grim. This led to an underestimation of the observed (North Atlantic inflow-North Pacific inflow) difference. The models generally underpredicted the magnitude of the fundamental term of the fitted seasonal cycle, most strongly at Cape Grim. The models more accurately reproduced the observed second harmonic terms compared to the fundamental terms at all stations. Significant correlations have been identified between the errors in the different models' estimates of the seasonal cycle parameters; these correlations may yield further insights into the causes of the model-measurement discrepancies

    Level set and PDE methods for visualization

    Get PDF
    Notes from IEEE Visualization 2005 Course #6, Minneapolis, MN, October 25, 2005. Retrieved 3/16/2006 from http://www.cs.drexel.edu/~david/Papers/Viz05_Course6_Notes.pdf.Level set methods, an important class of partial differential equation (PDE) methods, define dynamic surfaces implicitly as the level set (isosurface) of a sampled, evolving nD function. This course is targeted for researchers interested in learning about level set and other PDE-based methods, and their application to visualization. The course material will be presented by several of the recognized experts in the field, and will include introductory concepts, practical considerations and extensive details on a variety of level set/PDE applications. The course will begin with preparatory material that introduces the concept of using partial differential equations to solve problems in visualization. This will include the structure and behavior of several different types of differential equations, e.g. the level set, heat and reaction-diffusion equations, as well as a general approach to developing PDE-based applications. The second stage of the course will describe the numerical methods and algorithms needed to implement the mathematics and methods presented in the first stage, including information on implementing the algorithms on GPUs. Throughout the course the technical material will be tied to applications, e.g. image processing, geometric modeling, dataset segmentation, model processing, surface reconstruction, anisotropic geometric diffusion, flow field post-processing and vector visualization. Prerequisites: Knowledge of calculus, linear algebra, computer graphics, visualization, geometric modeling and computer vision. Some familiarity with differential geometry, differential equations, numerical computing and image processing is strongly recommended, but not required

    Tropospheric Ozone Assessment Report : Present-day ozone distribution and trends relevant to human health

    Get PDF
    This study quantifies the present-day global and regional distributions (2010–2014) and trends (2000–2014) for five ozone metrics relevant for short-term and long-term human exposure. These metrics, calculated by the Tropospheric Ozone Assessment Report, are: 4th highest daily maximum 8-hour ozone (4MDA8); number of days with MDA8 > 70 ppb (NDGT70), SOMO35 (annual Sum of Ozone Means Over 35 ppb) and two seasonally averaged metrics (3MMDA1; AVGMDA8). These metrics were explored at ozone monitoring sites worldwide, which were classified as urban or non-urban based on population and nighttime lights data.Present-day distributions of 4MDA8 and NDGT70, determined predominantly by peak values, are similar with highest levels in western North America, southern Europe and East Asia. For the other three metrics, distributions are similar with North–South gradients more prominent across Europe and Japan. Between 2000 and 2014, significant negative trends in 4MDA8 and NDGT70 occur at most US and some European sites. In contrast, significant positive trends are found at many sites in South Korea and Hong Kong, with mixed trends across Japan. The other three metrics have similar, negative trends for many non-urban North American and some European and Japanese sites, and positive trends across much of East Asia. Globally, metrics at many sites exhibit non-significant trends. At 59% of all sites there is a common direction and significance in the trend across all five metrics, whilst 4MDA8 and NDGT70 have a common trend at ~80% of all sites. Sensitivity analysis shows AVGMDA8 trends differ with averaging period (warm season or annual). Trends are unchanged at many sites when a 1995–2014 period is used; although fewer sites exhibit non-significant trends. Over the longer period 1970–2014, most Japanese sites exhibit positive 4MDA8/SOMO35 trends. Insufficient data exist to characterize ozone trends for the rest of Asia and other world regions
    • …
    corecore