586 research outputs found

    Rote is an essential feature of teaching and learning

    Get PDF
    A significant part of the commentary on the outcomes of schooling suggests that ‘learning by rote’ should have no place in contemporary teaching. There is a widely held view that rote learning is an historical hangover in teaching and learning. Learning by repetitive confrontation with factual material is seen as a waste of brain capacity at a time when computer-based information services better serve one’s information needs. This fails to recognise that some things must be learned and mastered and be available for immediate application, particularly those facts and experiences that form the foundation for the development of concepts and theory and of more sophisticated understandings

    Testing times for teachers and teaching

    Get PDF
    The decreasing demand from better-performing school-leavers for courses in teacher education reflects lower respect for the profession of teaching as a whole

    Using a stepped-care approach to help severely obese children and young people

    Get PDF
    Weight management is a game of chance for most children and young people, and is dependent on service availability and the expertise of the provider. Many localities are without established weight-management services, and the effectiveness of those provided is often not well-known. SHINE (Self Help, Independence, Nutrition and Exercise) is the only documented tier 3 community-based service provider in the UK. It offers a plethora of interventions tailored to each child or young person using a stepped-care approach (SCA) to treat severe obesity: as the severity of obesity increases, so does the intensity of intervention. This article describes an SCA and uses this model to demonstrate a range of appropriate, available interventions. A SCA can provide a holistic and integrative care pathway for children and young people with severe obesity when implemented at tier 3

    Nitrate Leaching in Irrigated Corn and Soybean in a Semi-Arid Climate

    Get PDF
    Nitrate-nitrogen leached from the root zone of land in intensive corn production is a major groundwater contaminant in some of the intensively irrigated regions of the western Cornbelt, including central and western Nebraska. To obtain a clearer understanding of the amount and timing of nitrate leaching losses from irrigated crops, 14 monolithic percolation lysimeters were installed in 1989-1990 in sprinkler irrigated plots at the University of Nebraska’s West Central Research and Extension Center near North Platte, Nebraska. The lysimeters were used to provide a direct measure of leachate depth from continuous corn and a corn-soybean rotation. Both cropping systems were sprinkler irrigated and used current best management practices (BMPs) in the region for water and nitrogen management. Leachate was collected from 1990 through 1998 and analyzed for nitrate-N concentration. Results for the period 1993- 1998 are reported here. In the semi-arid climate of West-Central Nebraska, the interaction of rainfall patterns with the period of active uptake of water by crops played a major role in defining leaching patterns. Careful irrigation scheduling did not eliminate leaching during the growing season. There was no significant difference in drainage depth between continuous corn and the corn-soybean rotation. The average drainage depth among the lysimeters was 218 mm yr-1. This was more than expected, and in part resulted from above normal precipitation during several years of the study. No water quality benefit was found for the corn-soybean rotation as compared to continuous corn. Nitrate-N concentration in the leachate from continuous corn averaged 24 mg L-1, while that from the corn-soybean rotation averaged 42 mg L-1. Total yearly nitrate leaching loss averaged 52 kg ha-1 for continuous corn and 91 kg ha-1 for the rotation. This represents the equivalent of 27% and 105% of the amount of N fertilizer applied over the six years of study. In calculating N fertilizer needs for corn in Nebraska, the recommended legume N credit of 50 kg ha-1 for a preceding crop of soybean may be too low under irrigated production

    Project Report No. 43, Site Index Equations for Loblolly and Slash Pine Plantations in East Texas, Update: 1996

    Get PDF
    In this update, after combining the data from the two subplots comprising each ETPPRP plot, the number of age-height pairs available for this analysis is 1,520 loblolly and 658 slash. the It is anticipated that the equations in this :996 update may productivity of East Texas loblolly and slash pine plantations quantify in a more accurate and reliable manner than the four previous sets 0: equations

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    [Comment] Redefine statistical significance

    Get PDF
    The lack of reproducibility of scientific studies has caused growing concern over the credibility of claims of new discoveries based on “statistically significant” findings. There has been much progress toward documenting and addressing several causes of this lack of reproducibility (e.g., multiple testing, P-hacking, publication bias, and under-powered studies). However, we believe that a leading cause of non-reproducibility has not yet been adequately addressed: Statistical standards of evidence for claiming discoveries in many fields of science are simply too low. Associating “statistically significant” findings with P < 0.05 results in a high rate of false positives even in the absence of other experimental, procedural and reporting problems. For fields where the threshold for defining statistical significance is P<0.05, we propose a change to P<0.005. This simple step would immediately improve the reproducibility of scientific research in many fields. Results that would currently be called “significant” but do not meet the new threshold should instead be called “suggestive.” While statisticians have known the relative weakness of using P≈0.05 as a threshold for discovery and the proposal to lower it to 0.005 is not new (1, 2), a critical mass of researchers now endorse this change. We restrict our recommendation to claims of discovery of new effects. We do not address the appropriate threshold for confirmatory or contradictory replications of existing claims. We also do not advocate changes to discovery thresholds in fields that have already adopted more stringent standards (e.g., genomics and high-energy physics research; see Potential Objections below). We also restrict our recommendation to studies that conduct null hypothesis significance tests. We have diverse views about how best to improve reproducibility, and many of us believe that other ways of summarizing the data, such as Bayes factors or other posterior summaries based on clearly articulated model assumptions, are preferable to P-values. However, changing the P-value threshold is simple and might quickly achieve broad acceptance

    Climate change and water in the UK : past changes and future prospects: a climate change report card for water: Working technical paper

    Get PDF
    Climate change is expected to modify rainfall, temperatures and catchment hydrological responses across the world, and adapting to these water-related changes is a pressing challenge. This paper reviews the impact of climate change on water in the UK and looks at projections of future change. The natural variability of the UK climate makes change hard to detect; only historical increases in air temperature can be attributed to climate change, but over the last fifty years more winter rainfall has been falling in intense events. Future changes in rainfall and evapotranspiration could lead to changed flow regimes and impacts on water quality, aquatic ecosystems and the water available for use by people. Summer flows may decrease on average, but floods may become larger and more frequent. Water quality may decline as a result of higher water temperatures, lower river flows and increased algal blooms. Water demand may increase in response to higher summer temperatures, placing additional pressure on water resources. These changes affect many parts of everyday life, emphasising the importance of long-term adaptation that takes these possible changes into account
    corecore