48 research outputs found

    Improving Exploration And Exploitation Capability Of Harmony Search Algorithm

    Full text link
    Harmony Search (HS) is a meta-heuristic algorithm which was first introduced in 2001 and it became a widely used optimization algorithm in various areas in engineering application as well as in water resources planning and management. However, as most meta-heuristic algorithms are, the HS shows a good performance in global search but not as good in local search. This study aims the improvement of both exploration and exploitation capability of the algorithm. The mission has been carried out by changing algorithm operators or parameters in the search process. Several types of Improved Harmony Search (IHS) have been successfully developed resulting better exploiting (local) search. Alternative way is to utilize the superior local search of other models or algorithms. The combined, so called hybrid algorithms can significantly supplement the weak local search aspect of the original HS. A newly developed hybrid algorithm, Smallest Small World Cellular Harmony Search (SSWCHS), is developed and proposed shorter characteristic path length and higher clustering coefficient, resulting good exploration and exploitation efficiency. Application to benchmark functions and design of pipe networks proves the superior performance of the newly developed hybrid algorithm

    Application Of Water Cycle Algorithm For Optimal Cost Design Of Water Distribution Systems

    Full text link
    Water distribution system (WDS) design is considered as a class of large combinatorial non-linear optimization problems having complex implicit constraints such as conservation of mass and energy equations. Due to the complexity and large feasible solution, traditional optimization techniques are not capable to tackle these kinds of problems. Recently, applications of metaheuristic algorithms, due to their efficiencies and performances, are increased dramatically. In this paper, water cycle algorithm (WCA), a recently developed population-based algorithm, coupled with hydraulic simulator, EPANET, are applied for finding the optimal cost design of WDS. The performance of the WCA is shown using well-known Balerma benchmark problem widely used in the literature. The obtained optimization results using the WCA are compared with other optimizers such as genetic algorithm, simulated annealing, and harmony search. Comparisons of obtained statistical results show the superiority of the WCA over other optimization methods in terms of convergence rate and solution quality

    Development of Practical Design Approaches for Water Distribution Systems

    Get PDF
    The optimal design of water distribution systems (WDSs) should be economical, consider practical field applicability, and satisfy hydraulic constraints such as nodal pressure and flow velocity. However, the general optimal design of a WDSs approach using a metaheuristic algorithm was difficult to apply for achieving pipe size continuity at the confluence point. Although some studies developed the design approaches considering the pipe continuity, these approaches took many simulation times. For these reasons, this study improves the existing pipe continuity search method by reducing the computation time and enhancing the ability to handle pipe size continuity at complex joints that have more than three nodes. In addition to more practical WDSs designs, the approach considers various system design factors simultaneously in a multi-objective framework. To verify the proposed approach, the three well-known WDSs to apply WDS design problems are applied, and the results are compared with the previous design method, which used a pipe continuity research algorithm. This study can reduce the computation time by 87% and shows an ability to handle complex joints. Finally, the application of this practical design technique, which considers pipe continuity and multiple design factors, can reduce the gap between the theoretical design and the real world because it considers construction conditions and abnormal situations.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Smallest-Small-World Cellular Harmony Search for Optimization of Unconstrained Benchmark Problems

    Get PDF
    We presented a new hybrid method that combines cellular harmony search algorithms with the Smallest-Small-World theory. A harmony search (HS) algorithm is based on musical performance processes that occur when a musician searches for a better state of harmony. Harmony search has successfully been applied to a wide variety of practical optimization problems. Most of the previous researches have sought to improve the performance of the HS algorithm by changing the pitch adjusting rate and harmony memory considering rate. However, there has been a lack of studies to improve the performance of the algorithm by the formation of population structures. Therefore, we proposed an improved HS algorithm that uses the cellular automata formation and the topological structure of Smallest-Small-World network. The improved HS algorithm has a high clustering coefficient and a short characteristic path length, having good exploration and exploitation efficiencies. Nine benchmark functions were applied to evaluate the performance of the proposed algorithm. Unlike the existing improved HS algorithm, the proposed algorithm is expected to have improved algorithmic efficiency from the formation of the population structure

    Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Get PDF
    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply

    Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Get PDF
    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
    corecore