18 research outputs found

    Spatiotemporal scaling changes in gait in a progressive model of Parkinson's disease

    Get PDF
    ObjectiveGait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait.DesignWe developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages.ResultsParkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state.ConclusionThe results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait

    Mandibular reconstruction with vascularised bone flaps: a systematic review over 25 years

    Get PDF
    To explore the techniques for mandibular reconstruction with composite free flaps and their outcomes, we systematically reviewed reports published between 1990 and 2015. A total of 9499 mandibular defects were reconstructed with 6178 fibular, 1380 iliac crest, 1127 composite radial, 709 scapular, 63 serratus anterior and rib, 32 metatarsal, and 10 lateral arm flaps including humerus. The failure rate was higher for the iliac crest (6.2%, 66/1059) than for fibular, radial, and scapular flaps combined (3.4%, 202/6018) (p<0.001). We evaluated rates of osteotomy, non-union, and fistulas. Implant-retained prostheses were used most often for rehabilitation after reconstruction with iliac crest (44%, 100/229 compared with 26%, 605/2295 if another flap was used) (p<0.001). There were no apparent changes in the choice of flap or in the complications reported. Although we were able to show some significant differences relating to the types of flap used, we were disappointed to find that fundamental outcomes such as the need for osteotomy, and rates of non-union and fistulas were under-reported. This review shows the need for more comprehensive and consistent reporting of outcomes to enable the comparison of different techniques for similar defects

    Effects of Different Athletic Playing Surfaces on Jump Height, Force, and Power

    No full text
    Hatfield, DL, Murphy, KM, Nicoll, JX, Sullivan, WM, and Henderson, J. Effects of different athletic playing surfaces on jump height, force, and power. J Strength Cond Res 33(4): 965-973, 2019 - Artificial turfs (ATs) have become more commonplace. Some aspects of performance such as speed seem to be better on ATs, but there are few published studies on the effects of playing surfaces on performance. Furthermore, there is no research that compares performance on ATs, hard surfaces (HSs), and different composite natural surfaces. Forty-three subjects, 21 men (age: 20 ± 1.82 years; height: 177.53 ± 5.87 cm; body mass: 78.44 ± 11.59 kg body fat: 11.17 ± 4.45%) and 22 women (age: 25 ± 1.32 years; height: 161.37 ± 6.47 cm; body mass: 60.94 ± 10.24 kg body fat: 27.16 ± 7.08%) performed a single countermovement jump (SCMJ), repeated CMJs (RCMJs), and single depth jump (SDJ) on 4 different playing surfaces (peat soil composition turf [NT1], sandy loam composition turf [NT2], 1 AT, and 1 HS. Repeated-measures analysis of variance with Bonferroni post hoc was used to calculate differences in performance across playing surfaces. Statistical significance was set at p ≤ 0.05. Force and jump height were not different across different surfaces. Men had significantly higher force, power, and jump height on all surfaces. Only SCMJ power was lower on NT1 compared with all other surfaces. The difference in power between surfaces was not reproduced when RCMJ and SDJ were performed, and may be due to the increased reactiveness of the stretch-shortening cycle during those jumps. Because of marginal differences between athletic performance and playing surface type, future research comparing playing surface type and other aspects of athletic success such as rate of injury should be considered
    corecore