552 research outputs found

    Mechanical Resistance in Decapod Claw Denticles: Contribution of Structure and Composition

    Get PDF
    The decapod crustacean exoskeleton is a multi-layered structure composed of chitin-protein fibers embedded with calcium salts. Decapod claws display tooth-like denticles, which come into direct contact with predators and prey. They are subjected to more regular and intense mechanical stress than other parts of the exoskeleton and therefore must be especially resistant to wear and abrasion. Here, we characterized denticle properties in five decapod species. Dactyls from three brachyuran crabs (Cancer borealis, Callinectes sapidus, and Chionoecetes opilio) and two anomuran crabs (Paralomis birsteini and Paralithodes camtschaticus) were sectioned normal to the contact surface of the denticle, revealing the interior of the denticle and the bulk endocuticle in which it is embedded. Microhardness, micro- and ultrastructure, and elemental composition were assessed along a transect running the width of the cuticle using microindentation hardness testing, optical and electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), respectively. In all species tested, hardness was dramatically higher—up to ten times—in the denticle than in the bulk endocuticle. Likewise, in all species there was an increase in packing density of mineralized chitin-protein fibers, a decrease in width of the pore canals that run through the cuticle, and a decrease in phosphorous content from endocuticle to denticle. The changes in hardness across the cuticle, and the relationship between hardness, calcium, and magnesium content, however, varied among species. Although mechanical resistance of the denticles was exceptionally high in all species, the basis for resistance appears to differ among species

    Compounds from Silicones Alter Enzyme Activity in Curing Barnacle Glue and Model Enzymes

    Get PDF
    Background: Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. Methodology/Principal Findings: GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Conclusions/Significance: Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties

    Assessment and Implication of Prognostic Imbalance in Randomized Controlled Trials with a Binary Outcome – A Simulation Study

    Get PDF
    Chance imbalance in baseline prognosis of a randomized controlled trial can lead to over or underestimation of treatment effects, particularly in trials with small sample sizes. Our study aimed to (1) evaluate the probability of imbalance in a binary prognostic factor (PF) between two treatment arms, (2) investigate the impact of prognostic imbalance on the estimation of a treatment effect, and (3) examine the effect of sample size (n) in relation to the first two objectives.We simulated data from parallel-group trials evaluating a binary outcome by varying the risk of the outcome, effect of the treatment, power and prevalence of the PF, and n. Logistic regression models with and without adjustment for the PF were compared in terms of bias, standard error, coverage of confidence interval and statistical power.For a PF with a prevalence of 0.5, the probability of a difference in the frequency of the PF≥5% reaches 0.42 with 125/arm. Ignoring a strong PF (relative risk = 5) leads to underestimating the strength of a moderate treatment effect, and the underestimate is independent of n when n is >50/arm. Adjusting for such PF increases statistical power. If the PF is weak (RR = 2), adjustment makes little difference in statistical inference. Conditional on a 5% imbalance of a powerful PF, adjustment reduces the likelihood of large bias. If an absolute measure of imbalance ≥5% is deemed important, including 1000 patients/arm provides sufficient protection against such an imbalance. Two thousand patients/arm may provide an adequate control against large random deviations in treatment effect estimation in the presence of a powerful PF.The probability of prognostic imbalance in small trials can be substantial. Covariate adjustment improves estimation accuracy and statistical power, and hence should be performed when strong PFs are observed

    Exploring the usability of a connected autonomous vehicle human machine interface designed for older adults

    Get PDF
    Users of Level 4–5 connected autonomous vehicles (CAVs) should not need to intervene with the dynamic driving task or monitor the driving environment, as the system will handle all driving functions. CAV human-machine interface (HMI) dashboards for such CAVs should therefore offer features to support user situation awareness (SA) and provide additional functionality that would not be practical within non-autonomous vehicles. Though, the exact features and functions, as well as their usability, might differ depending on factors such as user needs and context of use. The current paper presents findings from a simulator trial conducted to test the usability of a prototype CAV HMI designed for older adults and/or individuals with sensory and/or physical impairments: populations that will benefit enormously from the mobility afforded by CAVs. The HMI was developed to suit needs and requirements of this demographic based upon an extensive review of HMI and HCI principles focused on accessibility, usability and functionality [1, 2], as well as studies with target users. Thirty-one 50-88-year-olds (M 67.52, three 50–59) participated in the study. They experienced four seven-minute simulated journeys, involving inner and outer urban settings with mixed speed-limits and were encouraged to explore the HMI during journeys and interact with features, including a real-time map display, vehicle status, emergency stop, and arrival time. Measures were taken pre-, during- and post- journeys. Key was the System Usability Scale [3] and measures of SA, task load, and trust in computers and automation. As predicted, SA decreased with journey experience and although cognitive load did not, there were consistent negative correlations. System usability was also related to trust in technology but not trust in automation or attitudes towards computers. Overall, the findings are important for those designing, developing and testing CAV HMIs for older adults and individuals with sensory and/or physical impairments

    Speed/Accuracy Trade-Off between the Habitual and the Goal-Directed Processes

    Get PDF
    Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we propose a normative model for arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the model can explain choice reaction time variations during the course of learning, as well as the experimental observation that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition between the habitual and the goal-directed systems and thus, affect reaction time

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Dietary mineral supplies in Malawi: spatial and socioeconomic assessment

    Get PDF
    Background Dietary mineral deficiencies are widespread globally causing a large disease burden. However, estimates of deficiency prevalence are often only available at national scales or for small population sub-groups with limited relevance for policy makers. Methods This study combines food supply data from the Third Integrated Household Survey of Malawi with locally-generated food crop composition data to derive estimates of dietary mineral supplies and prevalence of inadequate intakes in Malawi. Results We estimate that >50 % of households in Malawi are at risk of energy, calcium (Ca), selenium (Se) and/or zinc (Zn) deficiencies due to inadequate dietary supplies, but supplies of iron (Fe), copper (Cu) and magnesium (Mg) are adequate for >80 % of households. Adequacy of iodine (I) is contingent on the use of iodised salt with 80 % of rural households living on low-pH soils had inadequate dietary Se supplies compared to 55 % on calcareous soils; concurrent inadequate supplies of Ca, Se and Zn were observed in >80 % of the poorest rural households living in areas with non-calcareous soils. Prevalence of inadequate dietary supplies was greater in rural than urban households for all nutrients except Fe. Interventions to address dietary mineral deficiencies were assessed. For example, an agronomic biofortification strategy could reduce the prevalence of inadequate dietary Se supplies from 82 to 14 % of households living in areas with low-pH soils, including from 95 to 21 % for the poorest subset of those households. If currently-used fertiliser alone were enriched with Se then the prevalence of inadequate supplies would fall from 82 to 57 % with a cost per alleviated case of dietary Se deficiency of ~ US$ 0.36 year−1. Conclusions Household surveys can provide useful insights into the prevalence and underlying causes of dietary mineral deficiencies, allowing disaggregation by spatial and socioeconomic criteria. Furthermore, impacts of potential interventions can be modelled

    Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants

    Get PDF
    Background The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms. Methodology/Principal Findings A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density. Conclusions We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment
    corecore