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Abstract The authors in a previous paper devised certain subcones of the semidefinite plus
nonnegative cone and showed that satisfaction of the requirements for membership of those
subcones can be detected by solving linear optimization problems (LPs) with O(n) variables
and O(n2) constraints. They also devised LP-based algorithms for testing copositivity using
the subcones. In this paper, they investigate the properties of the subcones in more detail and
explore larger subcones of the positive semidefinite plus nonnegative cone whose satisfac-
tion of the requirements for membership can be detected by solving LPs. They introduce a
semidefinite basis (SD basis) that is a basis of the space of n×n symmetric matrices consist-
ing of n(n+1)/2 symmetric semidefinite matrices. Using the SD basis, they devise two new
subcones for which detection can be done by solving LPs with O(n2) variables and O(n2)
constraints. The new subcones are larger than the ones in the previous paper and inherit
their nice properties. The authors also examine the efficiency of those subcones in numerical
experiments. The results show that the subcones are promising for testing copositivity as a
useful application.
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1 Introduction

Let Sn be the set of n × n symmetric matrices, and define their inner product as

〈A, B〉 = Tr (BT A) =
n∑

i. j=1

ai j bi j . (1)

Bomze et al. (2000) coined the term “copositive programming” in relation to the following
problem in 2000, on which many studies have since been conducted:

Minimize 〈C, X〉
subject to 〈Ai , X〉 = bi , (i = 1, 2, . . . ,m)

X ∈ COPn .

where COPn is the set of n×n copositive matrices, i.e., matrices whose quadratic form takes
nonnegative values on the n-dimensional nonnegative orthant R

n+:

COPn := {X ∈ Sn | dT Xd ≥ 0 for all d ∈ R
n+}.

We call the set COPn the copositive cone. A number of studies have focused on the close
relationship between copositive programming and quadratic or combinatorial optimization
(see, e.g., Bomze et al. 2000; Bomze and Klerk 2002; Klerk and Pasechnik 2002; Povh and
Rendl 2007, 2009; Bundfuss 2009; Burer 2009; Dickinson and Gijben 2014). Interested
readers may refer to Dür (2010) and Bomze (2012) for background on and the history of
copositive programming.

The following cones are attracting attention in the context of the relationship between
combinatorial optimization and copositive optimization (see, e.g., Dür 2010; Bomze 2012).
Here, conv (S) denotes the convex hull of the set S.

– The nonnegative cone Nn := {X ∈ Sn | xi j ≥ 0 for all i, j ∈ {1, 2, . . . , n}}.
– The semidefinite cone S+

n := {X ∈ Sn | dT Xd ≥ 0 for all d ∈ R
n} =

conv
({
xxT | x ∈ R

n
})
.

– The copositive cone COPn := {X ∈ Sn | dT Xd ≥ 0 for all d ∈ R
n+
}
.

– The semidefinite plus nonnegative cone S+
n + Nn , which is the Minkowski sum of S+

n
and Nn .

– The union S+
n ∪ Nn of S+

n and Nn .
– The doubly nonnegative cone S+

n ∩Nn , i.e., the set of positive semidefinite and compo-
nentwise nonnegative matrices.

– The completely positive cone CPn := conv
({
xxT | x ∈ R

n+
})
.

Except the set S+
n ∪Nn , all of the above cones are proper (see Section 1.6 of Berman and

Monderer (2003), where a proper cone is called a full cone), and we can easily see from the
definitions that the following inclusions hold:

COPn ⊇ S+
n + Nn ⊇ S+

n ∪ Nn ⊇ S+
n ⊇ S+

n ∩ Nn ⊇ CPn . (2)

While copositive programming has the potential of being a useful optimization technique,
it still faces challenges. One of these challenges is to develop efficient algorithms for deter-
mining whether a given matrix is copositive. It has been shown that the above problem is
co-NP-complete (Murty and Kabadi 1987; Dickinson 2014; Dickinson and Gijben 2014) and
many algorithms have been proposed to solve it (see, e.g., Bomze 1996; Bundfuss and Dür
2008; Johnson and Reams 2008; Jarre and Schmallowsky 2009; Z̆ilinskas and Dür 2011;
Sponsel et al. 2012; Bomze and Eichfelder 2013; Deng et al. 2013; Dür and Hiriart-Urruty
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2013; Tanaka and Yoshise 2015; Brás et al. 2015) Here, we are interested in numerical algo-
rithms which (a) apply to general symmetric matrices without any structural assumptions
or dimensional restrictions and (b) are not merely recursive, i.e., do not rely on informa-
tion taken from all principal submatrices, but rather focus on generating subproblems in a
somehow data-driven way, as described in Bomze and Eichfelder (2013). There are few such
algorithms, but they often use tractable subcones Mn of the semidefinite plus nonnegative
cone S+

n + Nn for detecting copositivity (see, e.g., Bundfuss and Dür 2008; Sponsel et al.
2012; Bomze and Eichfelder 2013; Tanaka and Yoshise 2015). As described in Sect. 5, these
algorithms require one to check whether A ∈ Mn or A /∈ Mn repeatedly over simplicial
partitions. The desirable properties of the subconesMn ⊆ S+

n +Nn used by these algorithms
can be summarized as follows:

P1 For any given n × n symmetric matrix A ∈ Sn , we can check whether A ∈ Mn within a
reasonable computation time, and

P2 Mn is a subset of the semidefinite plus nonnegative cone S+
n +Nn that at least includes

the n × n nonnegative cone Nn and contains as many elements S+
n + Nn as possible.

The authors, in Tanaka and Yoshise (2015), devised certain subcones of the semidefinite plus
nonnegative cone S+

n +Nn and showed that satisfaction of the requirements for membership
of those cones can be detected by solving linear optimization problems (LPs) with O(n)

variables and O(n2) constraints. They also created an LP-based algorithm that uses these
subcones for testing copositivity as an application of those cones.

The aim of this paper is twofold. First, we investigate the properties of the subcones in
more detail, especially in terms of their convex hulls. Second, we search for subcones of the
semidefinite plus nonnegative cone S+

n + Nn that have properties P1 and P2. To address
the second aim, we introduce a semidefinite basis (SD basis) that is a basis of the space Sn
consisting of n(n + 1)/2 symmetric semidefinite matrices. Using the SD basis, we devise
two new types of subcones for which detection can be done by solving LPs with O(n2)
variables and O(n2) constraints. As we will show in Corollary 1, these subcones are larger
than the ones proposed in Tanaka and Yoshise (2015) and inherit their nice properties. We
also examine the efficiency of those subcones in numerical experiments.

This paper is organized as follows: In Sect. 2, we show several tractable subcones of
S+
n + Nn that are receiving much attention in the field of copositive programming and

investigate their properties, the results of which are summarized in Figs. 1 and 2. In Sect. 3,
we propose new subcones of S+

n + Nn having properties P1 and P2. We define SD bases
using Definitions 1 and 2 and construct new LPs for detecting whether a givenmatrix belongs
to the subcones. In Sect. 4, we perform numerical experiments in which the new subcones
are used for identifying the given matrices A ∈ S+

n + Nn . As a useful application of the
new subcones, Sect. 5 describes experiments for testing copositivity of matrices arising from
the maximum clique problem and standard quadratic optimization problems. The results of
these experiments show that the new subcones are promising not only for identification of
A ∈ S+

n + Nn but also for testing copositivity. We give concluding remarks in Sect. 6.

2 Some tractable subcones of S+
n + Nn and related work

In this section, we show several tractable subcones of the semidefinite plus nonnegative cone
S+
n +Nn . Since the set S+

n +Nn is the dual cone of the doubly nonnegative cone S+
n ∩Nn ,

we see that
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S+
n + Nn = {A ∈ Sn | 〈A, X〉 ≥ 0 for any X ∈ S+

n ∩ Nn}
= {A ∈ Sn | 〈A, X〉 ≥ 0 for any X ∈ S+

n ∩ Nn such that Tr (X) = 1}
and that the weak membership problem for S+

n + Nn can be solved (to an accuracy of ε) by
solving the following doubly nonnegative program (which can be expressed as a semidefinite
program of size O(n2)).

Minimize 〈A, X〉
subject to 〈In, X〉 = 1, X ∈ S+

n ∩ Nn
(3)

where In denotes the n×n identitymatrix. Thus, the setS+
n +Nn is a rather large and tractable

convex subcone of COPn . However, solving the problem takes a lot of time (Sponsel et al.
2012; Yoshise and Matsukawa 2010) and does not make for a practical implementation in
general. To overcome this drawback, more easily tractable subcones of S+

n + Nn have been
proposed.

We define the matrix functions N , S : Sn → Sn such that, for A ∈ Sn , we have

N (A)i j :=
{
Ai j (Ai j > 0 and i �= j)
0 (otherwise)

and S(A) := A − N (A). (4)

In Sponsel et al. (2012), the authors defined the following set:

Hn := {A ∈ Sn | S(A) ∈ S+
n }. (5)

Here, we should note that A = S(A) + N (A) ∈ S+
n +Nn if A ∈ Hn . Also, for any A ∈ Nn ,

S(A) is a nonnegative diagonal matrix, and hence, Nn ⊆ Hn . The determination of A ∈ Hn

is easy and can be done by extracting the positive elements Ai j > 0 (i �= j) as N (A)i j
and by performing a Cholesky factorization of S(A) (cf. Algorithm 4.2.4 in Golub and Van
Loan 1996). Thus, from the inclusion relation (2), we see that the set Hn has the desirable
P1 property. However, S(A) is not necessarily positive semidefinite even if A ∈ S+

n +Nn or
A ∈ S+

n . The following theorem summarizes the properties of the set Hn .

Theorem 1 [Fiedler and Pták (1962) and Theorem 4.2 of Sponsel et al. (2012)] Hn is a
convex cone and Nn ⊆ Hn ⊆ S+

n + Nn. If n ≥ 3, these inclusions are strict and S+
n � Hn.

For n = 2, we have Hn = S+
n ∪ Nn = S+

n + Nn = COPn.

The construction of the subcone Hn is based on the idea of “checking nonnegativity
first and checking positive semidefiniteness second.” In Tanaka and Yoshise (2015), another
subcone is provided that is based on the idea of “checking positive semidefiniteness first and
checking nonnegativity second.” Let On be the set of n × n orthogonal matrices and Dn

be the set of n × n diagonal matrices. For a given symmetric matrix A ∈ Sn , suppose that
P = [p1, p2, . . . , pn] ∈ On and Λ = Diag (λ1, λ2, . . . , λn) ∈ Dn satisfy

A = PΛPT =
n∑

i=1

λi pi p
T
i . (6)

By introducing another diagonal matrix Ω = Diag (ω1, ω2, . . . , ωn) ∈ Dn , we can make the
following decomposition:

A = P(Λ − Ω)PT + PΩPT (7)

If Λ − Ω ∈ Nn , i.e., if λi ≥ ωi (i = 1, 2, . . . , n), then the matrix P(Λ − Ω)PT is positive
semidefinite. Thus, if we can find a suitable diagonal matrix Ω ∈ Dn satisfying

123



Ann Oper Res (2018) 265:155–182 159

λi ≥ ωi (i = 1, 2, . . . , n), [PΩPT ]i j ≥ 0 (1 ≤ i ≤ j ≤ n) (8)

then (7) and (2) imply

A = P(Λ − Ω)PT + PΩPT ∈ S+
n + Nn ⊆ COPn . (9)

We can determine whether such a matrix exists or not by solving the following linear opti-
mization problem with variables ωi (i = 1, 2, . . . , n) and α:

(LP)P,Λ

∣∣∣∣∣∣∣∣∣

Maximize α

subject to ωi ≤ λi (i = 1, 2, . . . , n)

[PΩPT ]i j =
[

n∑

k=1

ωk pk p
T
k

]

i j

≥ α (1 ≤ i ≤ j ≤ n)
(10)

Here, for a given matrix A, [A]i j denotes the (i, j)th element of A.
Problem (LP)P,Λ has a feasible solution at which ωi = λi (i = 1, 2, . . . , n) and

α = min

{[
PΛPT

]

i j
| 1 ≤ i ≤ j ≤ n

}
= min

{
n∑

k=1

λk[pk]i [pk] j | 1 ≤ i ≤ j ≤ n

}
.

For each i = 1, 2, . . . , n, the constraints

[PΩPT ]i i =
[

n∑

k=1

ωk pk p
T
k

]

i i

=
n∑

k=1

ωk[pk]2i ≥ α

and ωk ≤ λk (k = 1, 2, . . . , n) imply the bound α ≤ min
{∑n

k=1 λk[pk ]2i | 1 ≤ i ≤ n
}
.

Thus, (LP)P,Λ has an optimal solution with optimal value α∗(P,Λ). If α∗(P,Λ) ≥ 0, there
exists a matrix Ω for which the decomposition (8) holds. The following set Gn is based on
the above observations and was proposed in Tanaka and Yoshise (2015) as the set, Gn

Gn := {A ∈ Sn | PLGn (A) �= ∅} (11)

where

PLGn (A) := {(P,Λ) ∈ On × Dn | P and Λ satisfy (6) and α∗(P,Λ) ≥ 0} (12)

for a given A ∈ Sn . As stated above, if α∗(P,Λ) ≥ 0 for a given decomposition A = PΛPT ,
we can determine A ∈ Gn . In this case, we just need to compute a matrix decomposition
and solve a linear optimization problem with n + 1 variables and O(n2) constraints, which
implies that it is rather practical to use the set Gn as an alternative to using S+

n + Nn .
Suppose that A ∈ Sn has n different eigenvalues. Then the possible orthogonal matrices
P = [p1, p2, . . . , pn] ∈ On are identifiable, except for the permutation and sign inversion
of {p1, p2, . . . , pn}, and by representing (6) as

A =
n∑

i=1

λi pi p
T
i ,

we can see that the problem (LP)P,Λ is unique for any possible P ∈ On . In this case,
α∗(P,Λ) < 0 with a specific P ∈ On implies A /∈ Gn . However, if this is not the case (i.e.,
an eigenspace of A has at least dimension 2), α∗(P,Λ) < 0 with a specific P ∈ On does not
necessarily guarantee that A /∈ Gn .
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The above discussion can be extended to anymatrix P ∈ R
m×n ; i.e., it does not necessarily

have to be orthogonal or even square. The reason why the orthogonal matrices P ∈ On are
dealt with here is that some decomposition methods for (6) have been established for such
orthogonal Ps. The property Gn = com(Sn,Nn) in Theorem 2 also follows when P is
orthogonal.

In Tanaka and Yoshise (2015), the authors described another set Ĝn that is closely related
to Gn .

Ĝn := {A ∈ Sn | PLĜn
(A) �= ∅} (13)

where for A ∈ Sn , the set PLĜn
(A) is given by replacing On in (12) by the space R

n×n of
n × n arbitrary matrices, i.e.,

PLĜn
(A) := {(P,Λ) ∈ R

n×n × Dn | P and Λ satisfy (6) and α∗(P,Λ) ≥ 0}. (14)

If the setPLGn (A) in (12) is nonempty, then the setPLĜn
(A) is also nonempty, which implies

the following inclusions:

Gn ⊆ Ĝn ⊆ S+
n + Nn . (15)

Before describing the properties of the sets Gn and Ĝn , we will prove a preliminary lemma.

Lemma 1 LetK1 andK2 be two convex cones containing the origin. Then conv (K1∪K2) =
K1 + K2.

Proof Since K1 and K2 are convex cones, we can easily see that the inclusion K1 + K2 ⊆
conv (K1 ∪ K2) holds. The converse inclusion also follows from the fact that K1 and K2 are
convex cones. SinceK1 andK2 contain the origin,we see that the inclusionK1∪K2 ⊆ K1+K2

holds. From this inclusion and the convexity of the sets K1 and K2, we can conclude that

conv (K1 ∪ K2) ⊆ conv (K1 + K2) = K1 + K2.

��
The following theorem shows some of the properties of Gn and Ĝn . Assertions (i) and (ii)

were proved in Theorem 3.2 of Tanaka and Yoshise (2015). Assertion (iii) comes from the
fact that S+

n and Nn are convex cones and from Lemma 1. Assertions (iv)–(vi) follow from
(i)–(iii), the inclusion (15) and Theorem 1.

Theorem 2 (i) S+
n ∪ Nn ⊆ Gn

(ii) Gn = com (S+
n ,Nn), where the set com (S+

n ,Nn) is defined by

com (S+
n ,Nn) := {S + N | S ∈ S+

n , N ∈ Nn, S and N commute}.
(iii) conv (S+

n ∪ Nn) = S+
n + Nn.

(iv) S+
n ∪ Nn ⊆ Gn = com(S+

n ,Nn) ⊆ Ĝn ⊆ S+
n + Nn.

(v) If n = 2, then S+
n ∪ Nn = Gn = com (S+

n ,Nn) = Ĝn = S+
n + Nn

(vi) conv (S+
n ∪ Nn) = conv (Gn) = conv

(
com (S+

n ,Nn)
) = conv (Ĝn) = S+

n + Nn.

A number of examples provided in Tanaka and Yoshise (2015) illustrate the differences
between Hn , Gn . Moreover, the following two matrices have three different eigenvalues,
respectively, and we can identify

⎡

⎣
2 2 2
2 2 − 3
2 − 3 6

⎤

⎦ ∈ H3\G3,
⎡

⎣
1 5 − 2
5 1 − 2

− 2 − 2 4

⎤

⎦ ∈ (S+
3 + N3)\(H3 ∪ G3) (16)
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Fig. 1 Examples of inclusion relations among the subcones of S+
n + Nn I

by solving the associated LPs. Figure 1 draws those examples and (ii) of Theorem 2. Figure 2
follows from (vii) of Theorem 2 and the convexity of the setsNn ,S+

n andHn (see Theorem1).
At present, it is not clear whether the set Gn = com (S+

n ,Nn) is convex or not. As we will
mention our numerical results suggest that the set might be not convex.

Before closing this discussion, we should point out another interesting subset of S+
n +

Nn proposed by Bomze and Eichfelder (2013). Suppose that a given matrix A ∈ Sn can
be decomposed as (6), and define the diagonal matrix Λ+ by [Λ+]i i = max{0, λi }. Let
A+ := PΛ+PT and A− := A+ − A. Then, we can easily see that A+ and A− are positive
semidefinite. Using this decomposition A = A+ − A−, Bomze and Eichfelder derived the
following LP-based sufficient condition for A ∈ S+

n + Nn in Bomze and Eichfelder (2013).

Theorem 3 [Theorem 2.6 of Bomze and Eichfelder (2013)] Let x ∈ R
+
n be such that A+x

has only positive coordinates. If

(xT A+x)(A−)i i ≤ [(A+x)i ]2 (i = 1, 2, . . . , n)

then A ∈ COPn.

Consider the following LP with O(n) variables and O(n) constraints,

inf{ f T x | A+x ≥ e, x ∈ R
+
n } (17)

where f is an arbitrary vector and e denotes the vector of all ones. Define the set,

Ln := {A ∈ Sn | (xT A+x)(A−)i i ≤ [(A+x)i ]2 (i = 1, 2, . . . , n) for some feasible solution

x of (17)}.
Then Theorem 3 ensures that Ln ⊆ COPn . The following proposition gives a characteri-

zation when the feasible set of the LP of (17) is empty.
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Fig. 2 Examples of inclusion relations among the subcones of S+
n + Nn II

Proposition 1 [Proposition2.7 ofBomzeandEichfelder (2013)] The conditionkerA+∩{x ∈
R

+
n | eT x = 1} �= ∅ is equivalent to {x ∈ R

+
n | A+x ≥ e} = ∅.

Consider the matrix,

A =
[

1 − 1
− 1 1

]
∈ S+

2 .

Thus, A+ = A, and the set kerA+ ∩ {x ∈ R
+
n | eT x = 1} �= ∅. Proposition 1 ensures that

A /∈ L2, and hence, S+
n � Ln for n ≥ 2, similarly to the set Hn for n ≥ 3 (see Theorem 1).

3 Semidefinite bases

In this section, we improve the subcone Gn in terms of P2. For a given matrix A of (6), the
linear optimization problem (LP)P,Λ in (10) can be solved in order to find a nonnegative
matrix that is a linear combination

n∑

i=1

ωi pi p
T
i

of n linearly independent positive semidefinite matrices pi pTi ∈ S+
n (i = 1, 2, . . . , n). This

is done by decomposing A ∈ Sn into two parts:

A =
n∑

i=1

(λi − ωi )pi p
T
i +

n∑

i=1

ωi pi p
T
i (18)
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such that the first part

n∑

i=1

(λi − ωi )pi p
T
i

is positive semidefinite. Since pi pTi ∈ S+
n (i = 1, 2, . . . , n) are only n linearly independent

matrices in n(n+1)/2 dimensional spaceSn , the intersection of the set of linear combinations
of pi pTi and the nonnegative coneNn may not have a nonzero volume even if it is nonempty.
On the other hand, if we have a set of positive semidefinite matrices pi pTi ∈ S+

n (i =
1, 2, . . . , n(n + 1)/2) that gives a basis of Sn , then the corresponding intersection becomes
the nonnegative coneNn itself, and we may expect a greater chance of finding a nonnegative
matrix by enlarging the feasible region of (LP)P,Λ. In fact, we can easily find a basis of Sn
consisting of n(n+1)/2 semidefinite matrices from n given orthogonal vectors pi ∈ R

n (i =
1, 2, . . . , n) based on the following result from Dickinson (2011).

Proposition 2 [Lemma 6.2 of Dickinson (2011)] Let vi ∈ R
n(i = 1, 2, . . . , n) be n-

dimensional linear independent vectors. Then the set V := {(vi + v j )(vi + v j )
T | 1 ≤ i ≤

j ≤ n} is a set of n(n + 1)/2 linearly independent positive semidefinite matrices. Therefore,
the set V gives a basis of the set Sn of n × n symmetric matrices.

The above proposition ensures that the following set B+(p1, p2, . . . , pn) is a basis of
n × n symmetric matrices.

Definition 1 (Semidefinite basis type I) For a given set of n-dimensional orthogonal vectors
pi ∈ R

n(i = 1, 2, . . . , n), define the map Π+ : R
n × R

n → S+
n by

Π+(pi , p j ) := 1

4
(pi + p j )(pi + p j )

T . (19)

We call the set

B+(p1, p2, . . . , pn) := {Π+(pi , p j ) | 1 ≤ i ≤ j ≤ n} (20)

a semidefinite basis type I induced by pi ∈ R
n(i = 1, 2, . . . , n).

A variant of the semidefinite basis type I is as follows. Noting that the equivalence

Π+(pi , p j ) = 1

2
pi p

T
i + 1

2
p j p

T
j − Π−(pi , p j )

holds for any i �= j , we see that B−(p1, p2, . . . , pn) is also a basis of n × n symmetric
matrices.

Definition 2 (Semidefinite basis type II) For a given set of n-dimensional orthogonal vectors
pi ∈ R

n(i = 1, 2, . . . , n), define the map Π+ : R
n × R

n → S+
n by

Π−(pi , p j ) := 1

4
(pi − p j )(pi − p j )

T . (21)

We call the set

B−(p1, p2, · · · , pn) := {Π+(pi , pi ) | 1 ≤ i ≤ n} ∪ {Π−(pi , p j ) | 1 ≤ i < j ≤ n} (22)

a semidefinite basis type II induced by pi ∈ R
n(i = 1, 2, . . . , n).
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Using the map Π+ in (19), the linear optimization problem (LP)P,Λ in (10) can be equiv-
alently written as

(LP)P,Λ

∣∣∣∣∣∣∣∣∣

Maximize α

subject to ω+
i i ≤ λi (i = 1, 2, . . . , n)[
n∑

k=1

ω+
kkΠ+(pk, pk)

]

i j

≥ α (1 ≤ i ≤ j ≤ n).

The problem (LP)P,Λ is based on the decomposition (18). Starting with (18), the matrix
A can be decomposed using Π+(pi , p j ) in (19) and Π−(pi , p j ) in (21) as

A =
n∑

i=1

(λi − ω+
i i )Π+(pi , pi ) +

n∑

i=1

ω+
i i Π+(pi , pi )

=
n∑

i=1

(λi − ω+
i i )Π+(pi , pi ) +

n∑

i=1

ω+
i i Π+(pi , pi )

+
∑

1≤i< j≤n

(−ω+
i j )Π+(pi , p j ) +

∑

1≤i< j≤n

ω+
i jΠ+(pi , p j ) (23)

=
n∑

i=1

(λi − ω+
i i )Π+(pi , pi ) +

n∑

i=1

ω+
i i Π+(pi , pi )

+
∑

1≤i< j≤n

(−ω+
i j )Π+(pi , p j ) +

∑

1≤i< j≤n

ω+
i jΠ+(pi , p j )

+
∑

1≤i< j≤n

(−ω−
i j )Π−(pi , p j ) +

∑

1≤i< j≤n

ω−
i jΠ−(pi , p j ). (24)

On the basis of the decomposition (23) and (24), we devise the following two linear
optimization problems as extensions of (LP)P,Λ:

(LP)+P,Λ

∣∣∣∣∣∣∣∣∣∣∣∣

Maximize α

subject to ω+
i i ≤ λi (i = 1, 2, . . . , n)

ω+
i j ≤ 0 (1 ≤ i < j ≤ n)⎡

⎣
∑

1≤k≤l≤n

ω+
klΠ+(pk, pl)

⎤

⎦

i j

≥ α (1 ≤ i ≤ j ≤ n)

(25)

(LP)±P,Λ

∣∣∣∣∣∣∣∣∣∣∣∣

Maximize α

subject to ω+
i i ≤ λi (i = 1, 2, . . . , n)

ω+
i j ≤ 0, ω−

i j ≤ 0 (1 ≤ i < j ≤ n)⎡

⎣
∑

1≤k≤l≤n

ω+
klΠ+(pk , pl ) +

∑

1≤k<l≤n

ω−
klΠ−(pk , pl )

⎤

⎦

i j

≥ α (1 ≤ i ≤ j ≤ n)

(26)

Problem (LP)+P,Λ has n(n+1)/2+1 variables and n(n+1) constraints, and problem (LP)±P,Λ

has n2 + 1 variables and n(3n + 1)/2 constraints (see Table 1 ). Since [PΩPT ]i j in (10)
is given by

[∑n
k=1 ωkkΠ+(pk, pk)

]
i j , we can prove that both linear optimization problems

(LP)+P,Λ and (LP)±P,Λ are feasible and bounded by making arguments similar to the one for
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Table 1 Sizes of LPs for identification

Identification (P,Λ) ∈ PLGn (A) (P,Λ) ∈ PLF+
n

(A) (P, Λ) ∈ PLF±
n

(or (P,Λ) ∈ PLĜn
(A)) (or (P,Λ) ∈ PL̂F+

n
(A)) (or (P, Λ) ∈ PL̂F±

n
(A))

# of variables n + 1 n(n + 1)/2 + 1 n2 + 1

# of constraints n(n + 3)/2 n(n + 1) n(3n + 1)/2

(LP)P,Λ. Thus, (LP)
+
P,Λ and (LP)±P,Λ have optimal solutions with corresponding optimal

values α+∗ (P,Λ) and α±∗ (P,Λ).
If the optimal value α+∗ (P,Λ) of (LP)+P,Λ is nonnegative, then, by rearranging (23), the

optimal solution ω+∗
i j (1 ≤ i ≤ j ≤ n) can be made to give the following decomposition:

A =
⎡

⎣
n∑

i=1

(λi − ω+∗
i i )Π+(pi , pi ) +

∑

1≤i< j≤n

(−ω+∗
i j )Π+(pi , p j )

⎤

⎦

+
⎡

⎣
∑

1≤i≤ j≤n

ω+∗
i j Π+(pi , p j )

⎤

⎦ ∈ S+
n + Nn .

In the same way, if the optimal value α±∗ (P,Λ) of (LP)±P,Λ is nonnegative, then, by rear-

ranging (24), the optimal solution ω+∗
i j (1 ≤ i ≤ j ≤ n), ω−∗

i j (1 ≤ i < j ≤ n) can be made
to give the following decomposition:

A =
⎡

⎣
n∑

i=1

(λi − ω+∗
i i )Π+(pi , pi ) +

∑

1≤i< j≤n

(−ω+∗
i j )Π+(pi , p j ) +

∑

1≤i< j≤n

(−ω−∗
i j )Π−(pi , p j )

⎤

⎦

+
⎡

⎣
∑

1≤i≤ j≤n

ω+∗
i j Π+(pi , p j ) +

∑

1≤i< j≤n

ω−∗
i j Π−(pi , p j )

⎤

⎦ ∈ S+
n + Nn .

On the basis of the above observations, we can define new subcones of S+
n +Nn in a similar

manner as (11) and (13).
For a given A ∈ Sn , define the following four sets of pairs of matrices

PLF+
n
(A) := {(P,Λ) ∈ On × Dn | P and Λ satisfy (6) and α+∗ (P,Λ) ≥ 0}

PLF±
n
(A) := {(P,Λ) ∈ On × Dn | P and Λ satisfy (6) and α±∗ (P,Λ) ≥ 0}

PLF̂+
n
(A) := {(P,Λ) ∈ R

n×n × Dn | P and Λ satisfy (6) and α+∗ (P,Λ) ≥ 0}
PLF̂±

n
(A) := {(P,Λ) ∈ R

n×n × Dn | P and Λ satisfy (6) and α±∗ (P,Λ) ≥ 0}

(27)

where α+∗ (P,Λ) and α±∗ (P,Λ) are optimal values of (LP)+P,Λ and (LP)±P,Λ, respectively.
Using the above sets, we define new subcones of S+

n + Nn as follows:

F+
n := {A ∈ Sn | PLF+

n
(A) �= ∅},

F±
n := {A ∈ Sn | PLF±

n
(A) �= ∅},

F̂+
n := {A ∈ Sn | PLF̂+

n
(A) �= ∅},

F̂±
n := {A ∈ Sn | PLF̂±

n
(A) �= ∅}.

(28)
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From the construction of problems (LP)P,Λ, (LP)
+
P,Λ and (LP)±P,Λ, and the definitions

(27) and (28), we can easily see that

Gn ⊆ F+
n ⊆ F±

n , Ĝn ⊆ F̂+
n ⊆ F̂±

n , F+
n ⊆ F̂+

n , F±
n ⊆ F̂±

n

hold. The corollary below follows from (iv)–(vi) of Theorem 2 and the above inclusions.

Corollary 1 (i)

S+
n ∪ Nn ⊆ Gn = com(S+

n ,Nn) ⊆ Ĝn ⊆ S+
n + Nn

⊆ ⊆
S+
n ∪ Nn ⊆ F+

n ⊆ F̂+
n ⊆ S+

n + Nn

⊆ ⊆

S+
n ∪ Nn ⊆ F±

n ⊆ F̂±
n ⊆ S+

n + Nn

(ii) If n = 2, then each of the sets F+
n , F̂+

n , F±
n , and F̂±

n coincides with S+
n + Nn.

(iii) The convex hull of each of the sets F+
n , F̂+

n , F±
n , and F̂±

n is S+
n + Nn.

The following table summarizes the sizes of LPs (10), (25), and (26) that we have to solve
in order to identify, respectively, (P,Λ) ∈ PLGn (A) (or (P,Λ) ∈ PLĜn

(A)), (P,Λ) ∈
PLF+

n
(A) (or (P,Λ) ∈ PLF̂+

n
(A)), and (P,Λ) ∈ PLF±

n
(or (P,Λ) ∈ PLF̂±

n
(A)).

4 Identification of A ∈ S+
n + Nn

In this section, we investigate the effect of using the sets Gn , F+
n and F±

n for identification
of the fact A ∈ S+

n + Nn .
We generated random instances of A ∈ S+

n +Nn by using themethod described in Section
2 of Bomze and Eichfelder (2013). For an n × n matrix B with entries independently drawn
from a standard normal distribution, we obtained a random positive semidefinite matrix
S = BBT . An n × n random nonnegative matrix N was constructed using N = C − cmin In
withC = F+FT for a randommatrix F with entries uniformly distributed in [0, 1] and cmin

being the minimal diagonal entry ofC . We set A = S+N ∈ S+
n +Nn . The construction was

designed so as to maintain the nonnegativity of N while increasing the chance that S + N
would be indefinite and thereby avoid instances that are too easy.

For each instance A ∈ S+
n + Nn , we used the MATLAB command “[P,Λ] = eig(A)”

and obtained (P,Λ) ∈ On ×Dn . We checked whether (P, λ) ∈ PLGn ((P, L) ∈ PLF+
n
and

(P, L) ∈ PLF±
n
) by solving (LP)P,Λ in (10) ( (LP)+P,Λ in (25) and (LP)±P,Λ in (26)) and if

it held, we identified that A ∈ Gn (A ∈ F+
n and A ∈ F±

n ).
Table 2 shows the number of matrices (denoted by “#A”) that were identified as A ∈ Hn

(A ∈ G+
n , A ∈ F+

n , A ∈ F±
n and A ∈ S+

n + Nn) and the average CPU time (denoted
by “A.t.(s)”), where 1000 matrices were generated for each n. We used a 3.07GHz Core i7
machine with 12 GB of RAM and Gurobi 6.5 for solving LPs. Note that we performed the
last identification A ∈ S+

n + Nn as a reference, while we used SeDuMi 1.3 with MATLAB
R2015a for solving the semidefinite program (3). The table yields the following observations:

– All of the matrices were identified as A ∈ S+
n + Nn by checking (P, L) ∈ PLF±

n
. The

result is comparable to the one in Section 2 of Bomze and Eichfelder (2013). The average
CPU time for checking (P, L) ∈ PLF±

n
is faster than the one for solving the semidefinite

program (3) when n ≥ 20.
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Table 2 Results of identification of A ∈ S+
n + Nn : 1000 matrices were generated for each n

n Hn Gn F+
n F±

n S+
n + Nn

#A A.t.(s) #A A.t.(s) #A A.t.(s) #A A.t.(s) #A A.t.(s)

10 791 0.001 247 0.005 856 0.008 1000 0.011 1000 0.824

20 16 0.001 20 0.013 719 0.121 1000 0.222 1000 9.282

50 0 0.003 0 2.374 440 22.346 1000 50.092 1000 1285.981

– For any n, the number of identified matrices increases in the order of the set inclusion
relation: Gn ⊆ F+

n ⊆ F±
n , while the result for Hn � Gn is better than the one for Gn

when n = 10.
– For the setsHn , Gn and F+

n , the number of identified matrices decreases as the size of n
increases.

5 LP-based algorithms for testing A ∈ COPn

In this section, we investigate the effect of using the sets F+
n , F̂+

n , F±
n and F̂±

n for testing
whether a given matrix A is copositive by using Sponsel, Bundfuss, and Dür’s algorithm
(Sponsel et al. 2012).

5.1 Outline of the algorithms

By defining the standard simplex ΔS by ΔS = {x ∈ R
n+ | eT x = 1}, we can see that a given

n × n symmetric matrix A is copositive if and only if

xT Ax ≥ 0 for all x ∈ ΔS

(see Lemma 1 of Bundfuss and Dür 2008). For an arbitrary simplex Δ, a family of simplices
P = {Δ1, . . . , Δm} is called a simplicial partition of Δ if it satisfies

Δ =
m⋃

i=1

Δi and int(Δi ) ∩ int(Δ j ) = ∅ for all i �= j.

Such a partition can be generated by successively bisecting simplices in the partition.
For a given simplex Δ = conv{v1, . . . , vn}, consider the midpoint vn+1 = 1

2 (vi + v j )

of the edge [vi , v j ]. Then the subdivision Δ1 = {v1, . . . , vi−1, vn+1, vi+1, . . . , vn} and
Δ2 = {v1, . . . , v j−1, vn+1, v j+1, . . . , vn} of Δ satisfies the above conditions for simplicial
partitions. See Horst (1997) for a detailed description of simplicial partitions.

Denote the set of vertices of partition P by

V (P) = {v | v is a vertex of some Δ ∈ P}.
Each simplex Δ is determined by its vertices and can be represented by a matrix VΔ whose
columns are these vertices. Note that VΔ is nonsingular and unique up to a permutation of
its columns, which does not affect the argument (Sponsel et al. 2012). Define the set of all
matrices corresponding to simplices in partition P as

M(P) = {VΔ : Δ ∈ P}.
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The “fineness” of a partition P is quantified by the maximum diameter of a simplex in P ,
denoted by

δ(P) = max
Δ∈P max

u,v∈Δ
||u − v||. (29)

The above notation was used to show the following necessary and sufficient conditions
for copositivity in Sponsel et al. (2012). The first theorem gives a sufficient condition for
copositivity.

Theorem 4 [Theorem 2.1 of Sponsel et al. (2012)] If A ∈ Sn satisfies
V T AV ∈ COPn for all V ∈ M(P)

then A is copositive. Hence, for any Mn ⊆ COPn, if A ∈ Sn satisfies
V T AV ∈ Mn for all V ∈ M(P),

then A is also copositive.

The above theorem implies that by choosing Mn = Nn (see (2)), A is copositive if
V T

Δ AVΔ ∈ Nn holds for any Δ ∈ P .

Theorem 5 [Theorem 2.2 of Sponsel et al. (2012)] Let A ∈ Sn be strictly copositive, i.e.,
A ∈ int (COPn). Then there exists ε > 0 such that for all partitions P of ΔS with δ(P) < ε,
we have

V T AV ∈ Nn for all V ∈ M(P).

The above theorem ensures that if A is strictly copositive (i.e., A ∈ int (COPn)), the
copositivity of A (i.e., A ∈ COPn) can be detected in finitely many iterations of an algorithm
employing a subdivision rule with δ(P) → 0. A similar result can be obtained for the case
A /∈ COPn , as follows.

Lemma 2 [Lemma 2.3 of Sponsel et al. (2012)]
The following two statements are equivalent.

1. A /∈ COPn

2. There is an ε > 0 such that for any partition P with δ(P) < ε, there exists a vertex
v ∈ V (P) such that vT Av < 0.

The following algorithm, from Sponsel et al. (2012), is based on the above three results.
As we have already observed, Theorem 5 and Lemma 2 imply the following corollary.

Corollary 2 1. If A is strictly copositive, i.e., A ∈ int (COPn), then Algorithm 1 terminates
finitely, returning “A is copositive.”

2. If A is not copositive, i.e., A /∈ COPn, then Algorithm 1 terminates finitely, returning “A
is not copositive.”

In this section, we investigate the effect of using the sets Hn from (5), Gn from (11), and
F+
n and F±

n from (28) as the set Mn in the above algorithm.
At Line 7, we can check whether V T

Δ AVΔ ∈ Mn directly in the case where Mn =
Hn . In other cases, we diagonalize V T

Δ AVΔ as V T
Δ AVΔ = PΛPT and check whether

(P,Λ) ∈ PLMn (V
T
Δ AVΔ) according to definitions (12) or (27). If the associated LP has the

nonnegative optimal value, then we identify A ∈ Mn .
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Algorithm 1 Sponsel, Bundfuss, and Dür’s algorithm to test copositivity
Input: A ∈ Sn ,Mn ⊆ COPn
Output: “A is copositive” or “A is not copositive”
1: P ← {ΔS};
2: while P �= ∅ do
3: Choose Δ ∈ P ;
4: if vT Av < 0 for some v ∈ V ({Δ}): then
5: return “A is not copositive”;
6: end if
7: if we identify V T

Δ AVΔ ∈ Mn then
8: P ← P\{Δ};
9: else
10: Partition Δ into Δ = Δ1 ∪ Δ2;
11: P ← P\{Δ} ∪ {Δ1, Δ2};
12: end if
13: end while
14: Return “A is copositive”;

At Line 8, Algorithm 1 removes the simplex that was determined at Line 7 to be in no
further need of exploration by Theorem 4. The accuracy and speed of the determination
influence the total computational time and depend on the choice of the set Mn ⊆ COPn .

Here, if we choose Mn = Gn (respectively, Mn = F+
n , Mn = F±

n ), we can improve

Algorithm 1 by incorporating the set M̂n = Ĝn (respectively, M̂n = F̂+
n , M̂n = F̂±

n ), as
proposed in Tanaka and Yoshise (2015).

The details of the added steps are as follows. Suppose that we have a diagonalization of
the form (6).

At Line 8, we need to solve an additional LP but do not need to diagonalize V T
Δ AVΔ.

Let P and Λ be matrices satisfying (6). Then the matrix V T
Δ P can be used to diagonalize

V T
Δ AVΔ, i.e.,

V T
Δ AVΔ = V T

Δ (PΛPT )VΔ = (V T
Δ P)Λ(V T

Δ P)T

while V T
Δ P ∈ R

n×n is not necessarily orthogonal. Thus, we can test whether (V T
Δ P,Λ) ∈

PL̂Mn
by solving the corresponding LP according to the definitions (14) or (27). If

(V T
Δ P,Λ) ∈ PL̂Mn

holds, then we can identify V T
Δ AVΔ ∈ M̂n

If (V T
Δ P,Λ) /∈ PL̂Mn

at Line 8, we proceed to the original step to identify whether

V T
Δ AVΔ ∈ Mn at Line 12. Similarly to Line 7 of Algorithm 1, we diagonalize V T

Δ AVΔ as
V T

Δ AVΔ = PΛPT with an orthogonal matrix P and a diagonal matrix Λ. Then we check
whether (P,Λ) ∈ PLMn by solving the corresponding LP, and if (P,Λ) ∈ PLMn , we can
identify V T

Δ AVΔ ∈ Mn .
At Line 18, we don’t need to diagonalize V T

Δp AVΔp or solve any more LPs. Let ω∗ ∈ R
n

be an optimal solution of the corresponding LP obtained at Line 8 and let Ω∗ := Diag (ω∗).
Then the feasibility of ω∗ implies the positive semidefiniteness of the matrix V T

Δp P(Λ −
Ω∗)PT VΔp . Thus, if V T

Δp PΩ∗PT VΔp ∈ Nn , we see that

V T
Δp AVΔp = V T

Δp P(Λ − Ω∗)PT VΔp + V T
Δp PΩ∗PT VΔp ∈ S+

n + Nn

and that V T
Δp AVΔp ∈ M̂n .
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Algorithm 2 Improved version of Algorithm 1

Input: A ∈ Sn ,Mn ⊆ M̂n ⊆ COPn
Output: “A is copositive” or “A is not copositive”
1: P ← {ΔS};
2: while P �= ∅ do
3: Choose Δ ∈ P ;
4: if vT Av < 0 for some v ∈ V ({Δ}): then
5: Return “A is not copositive”;
6: end if
7: Let P and Λ be matrices satisfying A = PΛPT ;
8: if we identify V T

Δ AVΔ ∈ M̂n by checking whether (V T
Δ P,Λ) ∈ PL

̂Mn
then

9: P ← P\{Δ};
10: else
11: Let P and Λ be matrices satisfying V T

Δ AVΔ = PΛPT ;

12: if we identify V T
Δ AVΔ ∈ Mn by checking whether (P, Λ) ∈ PLMn then

13: P ← P\{Δ};
14: else
15: Partition Δ into Δ = Δ1 ∪ Δ2, and set Δ̂ ← {Δ1, Δ2};
16: for p = 1, 2 do
17: Let Ω∗ := Diag (ω∗) where ω∗ is an LP optimal solution obtained at Line 12;
18: if we identify V T

Δp AVΔp ∈ M̂n by checking whether V T
Δp PΩ∗PT VΔp ∈ Nn then

19: Δ̂ ← Δ̂\{Δp};
20: end if
21: end for
22: P ← P\{Δ} ∪ Δ̂;
23: end if
24: end if
25: end while
26: return “A is copositive”;

5.2 Numerical results

This subsection describes experiments for testing copositivity usingNn ,Hn , Gn ,F+
n , F̂+

n ,F±
n

or F̂±
n as the setMn in Algorithms 1 and 2. We implemented the following seven algorithms

in MATLAB R2015a on a 3.07 GHz Core i7 machine with 12 GB of RAM, using Gurobi
6.5 for solving LPs:

Algorithm 1.1: Algorithm 1 with Mn = Nn .
Algorithm 1.2: Algorithm 1 with Mn = Hn .
Algorithm 2.1: Algorithm 2 with Mn = Gn and M̂n = Ĝn .
Algorithm 1.3: Algorithm 1 with Mn = F+

n .

Algorithm 2.2: Algorithm 2 with Mn = F+
n and M̂n = F̂+

n .

Algorithm 2.3: Algorithm 2 with Mn = F±
n and M̂n = F̂±

n .
Algorithm 1.4: Algorithm 1 with Mn = S+

n + Nn .

As test instances, we used the two kinds of matrices arising from the maximum clique
problem (Sect. 5.2.1) and from standard quadratic optimization problems (Sect. 5.2.2).

5.2.1 Results for the matrix arising from the maximum clique problem

In this subsection, we consider the matrix

Bγ := γ (E − AG) − E (30)
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Fig. 3 Graphs G8 with ω(G8) = 3 (left) and G12 with ω(G12) = 4 (right)

where E ∈ Sn is the matrix whose elements are all ones and the matrix AG ∈ Sn is the
adjacency matrix of a given undirected graph G with n nodes. The matrix Bγ comes from
the maximum clique problem. The maximum clique problem is to find a clique (complete
subgraph) of maximum cardinality in G. It has been shown (in Klerk and Pasechnik 2002)
that the maximum cardinality, the so-called clique number ω(G), is equal to the optimal
value of

ω(G) = min{γ ∈ N | Bγ ∈ COPn}.
Thus, the clique number can be found by checking the copositivity of Bγ for at most γ =
n, n − 1, . . . , 1.

Figure 3 shows the instances of G that were used in Sponsel et al. (2012). We know the
clique numbers of G8 and G12 are ω(G8) = 3 and ω(G12) = 4, respectively.

The aim of the implementation is to explore the differences in behavior when using Hn ,
Gn , F+

n , F̂+
n , F±

n or F̂±
n as the set Mn rather than to compute the clique number efficiently.

Hence, the experiment examined Bγ for various values of γ at intervals of 0.1 around the
value ω(G) (see Tables 3, 4).

As already mentioned, α∗(P,Λ) < 0 (α+∗ (P,Λ) < 0 and α±∗ (P,Λ) < 0) with a specific

P does not necessarily guarantee that A /∈ Gn or A /∈ Ĝn (A /∈ F+
n or A /∈ F̂+

n , A /∈
F±
n or A /∈ F̂±

n ). Thus, it not strictly accurate to say that we can use those sets for Mn ,
and the algorithms may miss some of the Δ’s that could otherwise have been removed.
However, although this may have some effect on speed, it does not affect the termination of
the algorithm, as it is guaranteed by the subdivision rule satisfying δ(P) → 0, where δ(P)

is defined by (29).
Tables 3 and 4 show the numerical results for G8 and G12, respectively. Both tables

compare the results of the following seven algorithms in terms of the number of iterations
(the column “Iter.”) and the total computational time (the column “Time (s)” ):

The symbol “−” means that the algorithm did not terminate within 6 h. The reason for the
long computation time may come from the fact that for each graph G, the matrix Bγ lies on
the boundary of the copositive cone COPn when γ = ω(G) (ω(G8) = 3 and ω(G12) = 4).
See also Fig. 4, which shows a graph of the results of Algorithms 1.2, 2.1, 2.3, and 1.4 for
the graph G12 in Table 4.

We can draw the following implications from the results in Table 4 for the larger graph
G12 (similar implications can be drawn from Table 3):

– At any γ ≥ 5.2, Algorithms 2.1, 1,3, 2.2, 2.3, and 1.4 terminate in one iteration, and
the execution times of Algorithms 2.1, 1.3, 2.2, and 2.3 are much shorter than those of
Algorithms 1.1, 1.2, or 1.4.
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Fig. 4 Graph of Table 4: iterations versus γ of Algorithms 1.2, 2.1, 2.3 and 1.4 for the graph G12

– The lower bound of γ for which the algorithm terminates in one iteration and the one
for which the algorithm terminates in 6 h decrease in going from Algorithm 1.3 to
Algorithm 3.1. The reason may be that, as shown in Corollary 1, the set inclusion
relation Gn ⊆ F+

n ⊆ F±
n ⊆ S+

n + Nn holds.
– Table 1 summarizes the sizes of the LPs for identification. The results here imply that

the computational times for solving an LP have the following magnitude relationship for
any n ≥ 3:

Algorithm 2.1 < Algorithm 1.3 < Algorithm 2.2 < Algorithm 2.3.

On the other hand, the set inclusion relation Gn ⊆ F+
n ⊆ F±

n and the construction of
Algorithms 1 and 2 imply that the detection abilities of the algorithms also follow the
relationship described above and that the number of iterations has the reverse relationship
for any γ s in Table 4:

Algorithm 2.1 > Algorithm 1.3 > Algorithm 2.2 > Algorithm 2.3.

It seems that the order of the number of iterations has a stronger influence on the total
computational time than the order of the computational times for solving an LP.

– At each γ ∈ [4.1, 4.9], the number of iterations of Algorithm 2.3 is much larger than
one hundred times those of Algorithm 1.4. This means that the total computational time
of Algorithm 2.3 is longer than that of Algorithm 1.3 at each γ ∈ [4.1, 4.9], while
Algorithm 1.4 solves a semidefinite program of size O(n2) at each iteration.

– At each γ < 4, the algorithms show no significant differences in terms of the number
of iterations. The reason may be that they all work to find a v ∈ V ({Δ}) such that
vT (γ (E − AG) − E)v < 0, while their computational time depends on the choice of
simplex refinement strategy.

In view of the above observations, we conclude that Algorithm 2.3 with the choices
Mn = F±

n and M̂n = F̂±
n might be a way to check the copositivity of a given matrix A

when A is strictly copositive.
The above results are in contrast with those of Bomze and Eichfelder (2013), where the

authors show the number of iterations required by their algorithm for testing copositivity
of matrices of the form (30). On the contrary to the first observation described above, their
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Fig. 5 Graph of Table 4: time (s) versus γ of Algorithms 1.2, 2.1, 2.3 and 1.4 for the graph G12

algorithm terminates with few iterations when γ < ω(G), i.e., the corresponding matrix is
not copositive, and it requires a huge number of iterations otherwise (Fig. 5).

It should be noted that Table 3 shows an interesting result concerning the non-convexity
of the set Gn , while we know that conv (Gn) = S+

n +Nn (see Theorem 2). Let us look at the
result at γ = 4.0 of Algorithm 2.1. The multiple iterations at γ = 4.0 imply that we could
not find B4.0 ∈ Gn at the first iteration for a certain orthogonal matrix P satisfying (6). Recall
that the matrix Bγ is given by (30). It follows from E − AG ∈ Nn ⊆ Gn and from the result
at γ = 3.5 in Table 3 that

0.5(E − AG) ∈ Gn and B3,5 = 3.5(E − AG) − E ∈ Gn .
Thus, the fact that we could not determine whether the matrix

B4.0 = 4.0(E − AG) − E = 0.5(E − AG) + B3.5

lies in the set Gn suggests that the set Gn = com(S+
n ,Nn) is not convex.

5.2.2 Results for the matrix arising from standard quadratic optimization problems

In this subsection, we consider the matrix

Cγ := Q − γ E (31)

where E ∈ Sn is thematrix whose elements are all ones and Q ∈ Sn is an arbitrary symmetric
matrix, not necessarily positive semidefinite. The matrix Cγ comes from standard quadratic
optimization problems of the form,

Minimize xT Qx
subject to x ∈ ΔS := {x ∈ R

n+ | eT x = 1}. (32)

In Bomze et al. (2000), it is shown that the optimal value of the problem

p∗(Q) = max{γ ∈ R | Cγ ∈ COPn}.
is equal to the optimal value of (32).

The instances of the form (32) were generated using the procedure random_qp in Nowak
(1998) with two quartets of parameters (n, s, k, d) = (10, 5, 5.0.5) and (n, s, k, d) =
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(20, 10, 10.0.5), where the parameter n implies the size of Q, i.e., Q is an n × n matrix. It
has been shown in Nowak (1998) that random_qp generates problems, for which we know
the optimal value and a global minimizer a priori for each. We set the optimal value as −10
for each quartet of parameters.

Tables 5 and 6 show the numerical results for (n, s, k, d) = (10, 5, 5, 0.5) and
(n, s, k, d) = (20, 10, 10, 0.5). We generated 2 instances for each quartet of parameters
and performed the seven algorithms for these instances. Both tables compare the average
values of the seven algorithms in terms of the number of iterations (the column “Iter.”) and
the total computational time (the column “Time (s)” ): the symbol “−” means that the algo-
rithm did not terminate within 30 minutes. In each table, we made the interval between the
values γ smaller as γ got closer to the optimal value, to observe the behavior around the
optimal value more precisely.

From the results in Tables 5 and 6, we can draw implications that are very similar to those
for the maximum clique problem, listed (we hence, omitted discussing them here). A major
difference from the implications for the maximum clique problem is that Algorithm 1.2
using the set Hn is efficient for solving a small (n = 10) standard quadratic problem, while
it cannot solve the problem within 30 minutes when n = 20 and γ ≥ −10.3125.

6 Concluding remarks

In this paper, we investigated the properties of several tractable subcones of S+
n + Nn and

summarized the results (as Figs. 1, 2). We also devised new subcones of S+
n + Nn by

introducing the semidefinite basis (SD basis) defined as in Definitions 1 and 2.We conducted
numerical experiments using those subcones for identification of givenmatrices A ∈ S+

n +Nn

and for testing the copositivity of matrices arising from the maximum clique problem and
from standard quadratic optimization problems. We have to solve LPs with O(n2) variables
and O(n2) constraints in order to detect whether a given matrix belongs to those cones, and
the computational cost is substantial. However, the numerical results shown in Tables 2, 3, 4
and 6 show that the new subcones are promising not only for identification of A ∈ S+

n +Nn

but also for testing copositivity.
Recently, Ahmadi et al. (2015) developed algorithms for inner approximating the cone

of positive semidefinite matrices, wherein they focused on the set Dn ⊆ S+
n of n × n

diagonal dominant matrices. LetUn,k be the set of vectors in R
n that have at most k nonzero

components, each equal to ±1, and define

Un,k := {uuT | u ∈ Un,k}.
Then, as the authors indicate, the following theorem has already been proven.

Theorem 6 [Theorem 3.1 of Ahmadi et al. (2015), Barker and Carlson Barker and Carlson
(1975)]

Dn = cone(Un,k) :=
⎧
⎨

⎩

|Un,k |∑

i=1

αiUi | Ui ∈ Un,k, αi ≥ 0 (i = 1, . . . , |Un,k |)
⎫
⎬

⎭

From the above theorem, we can see that for the SDP bases B+(p1, p2, . . . , pn) in (20),
B−(p1, p2, . . . , pn) in (22) and n-dimensional unit vectors e1, e2, . . . , en , the following set
inclusion relation holds:

B+(e1, e2, . . . , en) ∪ B−(e1, e2, . . . , en) ⊆ Dn = cone(Un,k).

These sets should be investigated in the future.
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