1,621 research outputs found

    Sustainable Strategy Based on Induced Precipitation for the Purification of Phycobiliproteins

    Get PDF
    Phycobiliproteins are fluorescent proteins mainly produced by red macroalgae and cyanobacteria. These proteins, essential to the survival of these organisms, find application in many fields of interest, from medical, pharmaceutical, and cosmetic to food and textile industries. The biggest obstacle to their use is the lack of simple environmental and economical sustainable methodologies to obtain these proteins with high purity. In this work, a new purification process is proposed based on the induced precipitation of the target proteins followed by ultrafiltration. Purities of 89.5% of both phycobiliproteins and 87.3% of R-phycoerythrin were achieved using ammonium sulfate and poly(acrylic acid) sodium salts as precipitation agents (followed by an ultrafiltration step), while maintaining high recovery yields and protein structure stability. Environmental analysis performed to evaluate the proposed process shows that the carbon footprint for the proposed process is much lower than that reported for alternative methodology, and the economic analysis reveals the cost-effective character associated to its high performance. This work is a step toward more sustainable and effective methodologies/processes with high industrial potential

    Fanconi anemia and vaginal squamous cell carcinoma

    Get PDF
    Fanconi Anemia (FA) is an autosomal recessive disease characterized by chromosome instability, cellular hypersensitivity to DNA cross-linking agents, and increased predisposition to malignancies. We describe here a 28 year-old female with FA and vaginal squamous cell carcinoma treated by radiation therapy alone. The patient developed arm phlebitis, pulmonary fungal infection, and severe rectal bleeding, followed by hypocalcaemia, hypokalemia, vaginal bacterial and fungal infection, with subsequent leg and arm phlebitis, perineal abscess, and sepsis. The patient died 12 weeks later

    Addressing robustness in time-critical, distributed, task allocation algorithms.

    Get PDF
    The aim of this work is to produce and test a robustness module (ROB-M) that can be generally applied to distributed, multi-agent task allocation algorithms, as robust versions of these are scarce and not well-documented in the literature. ROB-M is developed using the Performance Impact (PI) algorithm, as this has previously shown good results in deterministic trials. Different candidate versions of the module are thus bolted on to the PI algorithm and tested using two different task allocation problems under simulated uncertain conditions, and results are compared with baseline PI. It is shown that the baseline does not handle uncertainty well; the task-allocation success rate tends to decrease linearly as degree of uncertainty increases. However, when PI is run with one of the candidate robustness modules, the failure rate becomes very low for both problems, even under high simulated uncertainty, and so its architecture is adopted for ROB-M and also applied to MIT’s baseline Consensus Based Bundle Algorithm (CBBA) to demonstrate its flexibility. Strong evidence is provided to show that ROB-M can work effectively with CBBA to improve performance under simulated uncertain conditions, as long as the deterministic versions of the problems can be solved with baseline CBBA. Furthermore, the use of ROB-M does not appear to increase mean task completion time in either algorithm, and only 100 Monte Carlo samples are required compared to 10,000 in MIT’s robust version of the CBBA algorithm. PI with ROB-M is also tested directly against MIT’s robust algorithm and demonstrates clear superiority in terms of mean numbers of solved tasks.N/

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Black hole thermodynamics with conical defects

    Get PDF
    Recently we have shown [1] how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena

    Search for the standard model Higgs boson at LEP

    Get PDF

    eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly

    Get PDF
    Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore