336 research outputs found

    Dificultades generales en los procesos de la lectura y escritura y en el factor complementario de la memoria. Estudio de caso de una niña de 11 años

    Get PDF
    La lectura constituye una herramienta imprescindible para el aprendizaje, pues a través de ella se construye o reconstruye el significado del texto que se lee; sin embargo, en nuestro país tanto pruebas nacionales como internacionales, evidencian que nuestros estudiantes carecen o tienen muy limitada esta capacidad, lo cual les impide acceder a toda la información que les exige no sólo el medio escolar, sino más aún el medio social donde interactúan. El presente estudio de caso tuvo como objetivo diseñar un plan de evaluación e intervención acorde a las necesidades que presenta una niña de 11 años y 3 meses con dificultades en los procesos léxicos y semánticos de la lectura, así como en la memoria. Las dificultades en los procesos léxicos hacen referencia a las dificultades para reconocer las palabras, acceder a su significado y pronunciación, mientras que las dificultades en los procesos semánticos de la lectura ponen de manifiesto a las dificultades que posee un niño para acceder al significado del texto que lee, dificultades que lo ubican debajo de lo esperado para su edad o grado de estudio. Se utilizan tareas de conciencia fonológica, a través de actividades lúdicas y material concreto para mejorar el nivel lector de la niña, estrategias cognitivas de la lectura para permitirle acceder y recuperar la información de los textos leídos, además de actividades integradas a los procesos trabajados en las áreas de lectura y escritura para mejorar su memoria. Los resultados evidencian una mejora tanto en la precisión como en la velocidad lectora, así como en la comprensión de los textos que lee y en su memoria. Se concluye que el plan de intervención aplicado permitió evidenciar en la niña avances en los procesos léxicos y semánticos de la lectura, así como en su memoria.Tesis de segunda especialida

    Preventing Falls in Older Californians: State of the Art

    Get PDF
    In February 2003, the Foundation convened over 150 leaders in academic, legislative, community-based services, consumer advocates, aging network, housing, public health, public safety, and other leaders who worked for two days on a statewide blueprint on fall prevention.  In preparation for the convening, a Preconference White Paper was created and used to build the blueprint.  The California Blueprint describes state-of-the-art approaches to reducing the risks of falls, and the challenges to implementing fall prevention in California.  One of the top recommendations from this blueprint was the creation of a coordination center that could serve as a statewide resource and lead efforts in fall prevention.  This recommendation eventually led to the creation of the Fall Prevention Center of Excellence (FPCE)

    For Those Who Grew Too Fast

    Get PDF
    This volume welcomes you amid multiple global epidemics. It welcomes you home, hoping that these words provide visibility, comfort, introspection, and roadmap for pushing boundaries. We know we are tired, we know we are facing uncertainty at every turn, and we know that connection is wearing thin. This collection of words serves as an “I see you,” as an “I am with you,” as an “I love you.” These pieces came together toward end of the Spring 2020, when a group of first-year and transfer students came together to speak their existence. They bring memories and a reminder that together we can construct a culture that builds upon our truth and possibility. Education can be an epicenter of civic imagination, innovative directions in service justice, and above all, radical love. This volume is a testament to this. Welcome to First-Gen Voices Volume Nine: For Those Who Grew Too Fast

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore