4 research outputs found

    Modulation of angiogenesis during adipose tissue development in murine models of obesity.

    Full text link
    peer reviewedDevelopment of vasculature and mRNA expression of 17 pro- or antiangiogenic factors were studied during adipose tissue development in nutritionally induced or genetically determined murine obesity models. Subcutaneous (SC) and gonadal (GON) fat pads were harvested from male C57Bl/6 mice kept on standard chow [standard fat diet (SFD)] or on high-fat diet for 0-15 wk and from male ob/ob mice kept on SFD. Ob/ob mice and C57Bl/6 mice on high-fat diet had significantly larger SC and GON fat pads, accompanied by significantly higher blood content, increased total blood vessel volume, and higher number of proliferating cells. mRNA and protein levels of angiopoietin (Ang)-1 were down-regulated, whereas those of thrombospondin-1 were up-regulated in developing adipose tissue in both obesity models. Ang-1 mRNA levels correlated negatively with adipose tissue weight in the early phase of nutritionally induced obesity as well as in genetically determined obesity. Placental growth factor and Ang-2 expression were increased in SC adipose tissue of ob/ob mice, and thrombospondin-2 was increased in both their SC and GON fat pads. mRNA levels of vascular endothelial growth factor (VEGF)-A isoforms VEGF-B, VEGF-C, VEGF receptor-1, -2, and -3, and neuropilin-1 were not markedly modulated by obesity. This modulation of angiogenic factors during development of adipose tissue supports their important functional role in obesity

    Enhanced nutritionally induced adipose tissue development in mice with stromelysin-1 gene inactivation.

    Full text link
    To investigate a potential role of stromelysin-1 (MMP-3) in development of adipose tissue, 5 week old male MMP-3 deficient mice (MMP-3(-/-)) and wild-type (MMP-3(+/+)) controls were kept on a high fat diet (HFD) for 15 weeks. MMP-3(-/-) mice were hyperphagic and gained more weight than the MMP-3(+/+) mice. At the time of sacrifice, the body weight of the MMP-3(-/-) mice was significantly higher than that of the MMP-3(+/+) mice, as was the weight of the isolated subcutaneous (SC) and gonadal (GON) fat deposits. Significant adipocyte hypertrophy was observed in the GON but not in the SC adipose tissue of MMP-3(-/-) mice. Fasting plasma glucose and cholesterol levels were comparable in both genotypes, whereas triglyceride levels were significantly lower in MMP-3(-/-) mice. Staining with an endothelial cell specific lectin revealed a significantly higher blood vessel density and larger total stained area in the GON adipose tissues of MMP-3(-/-) mice. Thus, in a murine model of nutritionally induced obesity, MMP-3 impairs adipose tissue development, possibly by affecting food intake and/or adipose tissue-related angiogenesis

    Deficiency of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) impairs nutritionally induced obesity in mice.

    Full text link
    Tissue inhibitor of matrix metalloproteinase-1 deficient (TIMP-1(-/-)) mice and wild-type (TIMP-1(+/+)) controls were kept on a standard (SFD) or a high fat diet (HFD) for 15 weeks. At the time of sacrifice, TIMP-1(-/-) mice on HFD had a significantly lower body weight (29 +/- 1.5 versus 41 +/- 1.8 g, p <0.005), and significantly less subcutaneous (0.81 +/- 0.19 versus 1.78 +/- 0.21 g, p <0.05) and gonadal (0.87 +/- 0.17 versus 1.85 +/- 0.18 g, p <0.005) fat mass. These differences were much less pronounced for mice on SFD. On HFD but not on SFD, adipocyte diameters were significantly lower in the adipose tissue of TIMP-1(-/-) mice. Plasma leptin levels in TIMP-1(-/-) mice on HFD were significantly lower as compared to TIMP-1(+/-) mice, and strongly correlated with adipose tissue mass for both genotypes. Staining with an endothelial cell specific lectin revealed a significantly higher blood vessel density, larger stained area and vessel size in adipose tissue of TIMP-1(-/-) mice on HFD. This difference disappeared after normalization to the adipocyte number, suggesting that it does not represent a true enhancement of angiogenesis. Thus, in a murine model of nutritionally induced obesity, TIMP-1 promotes adipose tissue development

    Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)

    No full text
    A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years
    corecore