42 research outputs found

    Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV

    Get PDF
    The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar vertical bar(vertical bar eta cm vertical bar) <0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.Peer reviewe

    Search for natural and split supersymmetry in proton-proton collisions at root s=13 TeV in final states with jets and missing transverse momentum

    Get PDF
    A search for supersymmetry (SUSY) is performed in final states comprising one or more jets and missing transverse momentum using data from proton-proton collisions at a centre-of-mass energy of 13 TeV. The data were recorded with the CMS detector at the CERN LHC in 2016 and correspond to an integrated luminosity of 35.9 fb(-1). The number of signal events is found to agree with the expected background yields from standard model processes. The results are interpreted in the context of simplified models of SUSY that assume the production of gluino or squark pairs and their prompt decay to quarks and the lightest neutralino. The masses of bottom, top, and mass-degenerate light-flavour squarks are probed up to 1050, 1000, and 1325 GeV, respectively. The gluino mass is probed up to 1900, 1650, and 1650 GeV when the gluino decays via virtual states of the aforementioned squarks. The strongest mass bounds on the neutralinos from gluino and squark decays are 1150 and 575 GeV, respectively. The search also provides sensitivity to simplified models inspired by split SUSY that involve the production and decay of long-lived gluinos. Values of the proper decay length CT0 from 10(-3) to 10(5) mm are considered, as well as a metastable gluino scenario. Gluino masses up to 1750 and 900 GeV are probed for CT0 = 1mm and for the metastable state, respectively. The sensitivity is moderately dependent on model assumptions for CT0 greater than or similar to 1 m. The search provides coverage of the CT0 parameter space for models involving long-lived gluinos that is complementary to existing techniques at the LHC.Peer reviewe

    Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV

    Get PDF
    Peer reviewe

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe

    Search for additional neutral MSSM Higgs bosons in the τ τ final state in proton-proton collisions at s=13 \sqrt{s}=13 TeV

    Get PDF
    A search is presented for additional neutral Higgs bosons in the τ τ final state in proton-proton collisions at the LHC. The search is performed in the context of the minimal supersymmetric extension of the standard model (MSSM), using the data collected with the CMS detector in 2016 at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1. To enhance the sensitivity to neutral MSSM Higgs bosons, the search includes production of the Higgs boson in association with b quarks. No significant deviation above the expected background is observed. Model-independent limits at 95% confidence level (CL) are set on the product of the branching fraction for the decay into τ leptons and the cross section for the production via gluon fusion or in association with b quarks. These limits range from 18 pb at 90 GeV to 3.5 fb at 3.2 TeV for gluon fusion and from 15 pb (at 90 GeV) to 2.5 fb (at 3.2 TeV) for production in association with b quarks, assuming a narrow width resonance. In the m h hod + scenario these limits translate into a 95% CL exclusion of tan ÎČ > 6 for neutral Higgs boson masses below 250 GeV, where tan ÎČ is the ratio of the vacuum expectation values of the neutral components of the two Higgs doublets. The 95% CL exclusion contour reaches 1.6 TeV for tan ÎČ = 60

    Search for new phenomena in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum in pp collisions at root s=13TeV

    Get PDF
    Search results are presented for physics beyond the standard model in final states with two opposite-charge, same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb−1 of proton-proton collisions at s√=13 TeV collected with the CMS detector at the LHC in 2016. The analysis uses the invariant mass of the lepton pair, searching for a kinematic edge or a resonant-like excess compatible with the Z boson mass. The search for a kinematic edge targets production of particles sensitive to the strong force, while the resonance search targets both strongly and electroweakly produced new physics. The observed yields are consistent with the expectations from the standard model, and the results are interpreted in the context of simplified models of supersymmetry. In a gauge mediated supersymmetry breaking (GMSB) model of gluino pair production with decay chains including Z bosons, gluino masses up to 1500–1770 GeV are excluded at the 95% confidence level depending on the lightest neutralino mass. In a model of electroweak chargino-neutralino production, chargino masses as high as 610 GeV are excluded when the lightest neutralino is massless. In GMSB models of electroweak neutralino-neutralino production, neutralino masses up to 500-650 GeV are excluded depending on the decay mode assumed. Finally, in a model with bottom squark pair production and decay chains resulting in a kinematic edge in the dilepton invariant mass distribution, bottom squark masses up to 980–1200 GeV are excluded depending on the mass of the next-to-lightest neutralino
    corecore