136 research outputs found

    In silico screening of mutational effects on enzyme-proteic inhibitor affinity: a docking-based approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular recognition between enzymes and proteic inhibitors is crucial for normal functioning of many biological pathways. Mutations in either the enzyme or the inhibitor protein often lead to a modulation of the binding affinity with no major alterations in the 3D structure of the complex.</p> <p>Results</p> <p>In this study, a rigid body docking-based approach has been successfully probed in its ability to predict the effects of single and multiple point mutations on the binding energetics in three enzyme-proteic inhibitor systems. The only requirement of the approach is an accurate structural model of the complex between the wild type forms of the interacting proteins, with the assumption that the architecture of the mutated complexes is almost the same as that of the wild type and no major conformational changes occur upon binding. The method was applied to 23 variants of the ribonuclease inhibitor-angiogenin complex, to 15 variants of the barnase-barstar complex, and to 8 variants of the bovine pancreatic trypsin inhibitor-β Trypsin system, leading to thermodynamic and kinetic estimates consistent with in vitro data. Furthermore, simulations with and without explicit water molecules at the protein-protein interface suggested that they should be included in the simulations only when their positions are well defined both in the wild type and in the mutants and they result to be relevant for the modulation of mutational effects on the association process.</p> <p>Conclusion</p> <p>The correlative models built in this study allow for predictions of mutational effects on the thermodynamics and kinetics of association of three substantially different systems, and represent important extensions of our computational approach to cases in which it is not possible to estimate the absolute free energies. Moreover, this study is the first example in the literature of an extensive evaluation of the correlative weights of the single components of the ZDOCK score on the thermodynamics and kinetics of binding of protein mutants compared to the native state.</p> <p>Finally, the results of this study corroborate and extend a previously developed quantitative model for in silico predictions of absolute protein-protein binding affinities spanning a wide range of values, i.e. from -10 up to -21 kcal/mol.</p> <p>The computational approach is simple and fast and can be used for structure-based design of protein-protein complexes and for in silico screening of mutational effects on protein-protein recognition.</p

    Development of Quantitative Structure-Property Relationships (QSPR) using calculated descriptors for the prediction of the physico-chemical properties (nD, r, bp, e and h) of a series of organic solvents.

    Get PDF
    Quantitative structure-property relationship (QSPR) models were derived for predicting boiling point (at 760 mmHg), density (at 25 \ub0C), viscosity (at 25 \ub0C), static dielectric constant (at 25 \ub0C), and refractive index (at 20 \ub0C) of a series of pure organic solvents of structural formula X-CH2CH2-Y. A very large number of calculated molecular descriptors were derived by quantum chemical methods, molecular topology, and molecular geometry by using the CODESSA software package. A comparative analysis of the multiple linear regression techniques (heuristic and best multilinear regression) implemented in CODESSA, with the multivariate PLS/GOLPE method, has been carried out. The performance of the different regression models has been evaluated by the standard deviation of prediction errors, calculated for the compounds of both the training set (internal validation) and the test set (external validation). Satisfactory QSPR models, from both predictive and interpretative point of views, have been obtained for all the studied properties

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    stairs and fire

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore