308 research outputs found

    NMR Studies of Platinum bisphosphine complexes of phenylphosphonamidodiselenoate

    Get PDF
    A series of platinum (II) bisphosphine complexes 1-20 [Pt(R’NH(Ph)PSe2)(PR3)2] (where R = Ph3, Ph2Me, Me2Ph, PMe3 and R’ = iPr, nBu, sBu, tBu, Benz) have been prepared by reaction of cis-[Pt(PR3)2Cl2)] and the alkyl ammonium salt of the ligand. The novel compounds were characterised by multinuclear NMR, and in one case X-Ray crystallography. The molecular structures of two ligand salts and [Pt(sBu’NH(Ph)PSe2)(PPh3)2] are reported.Peer reviewe

    Geometrical-based lip-reading using template probabilistic multi-dimension dynamic time warping

    Get PDF
    By identifying lip movements and characterizing their associations with speech sounds, the performance of speech recognition systems can be improved, particularly when operating in noisy environments. In this paper, we present a geometrical-based automatic lip reading system that extracts the lip region from images using conventional techniques, but the contour itself is extracted using a novel application of a combination of border following and convex hull approaches. Classification is carried out using an enhanced dynamic time warping technique that has the ability to operate in multiple dimensions and a template probability technique that is able to compensate for differences in the way words are uttered in the training set. The performance of the new system has been assessed in recognition of the English digits 0 to 9 as available in the CUAVE database. The experimental results obtained from the new approach compared favorably with those of existing lip reading approaches, achieving a word recognition accuracy of up to 71% with the visual information being obtained from estimates of lip height, width and their ratio

    Investigation of dimensionality reduction in a finger vein verification system

    Get PDF
    Popular methods of protecting access such as Personal Identification Numbers and smart cards are subject to security risks that result from accidental loss or being stolen. Risk can be reduced by adopting direct methods that identify the person and these are generally biometric methods, such as iris, face, voice and fingerprint recognition approaches. In this paper, a finger vein recognition method has been implemented in which the effect on performance has of using principal components analysis has been investigated. The data were obtained from the finger-vein database SDMULA-HMT and the images underwent contrast-limited adaptive histogram equalization and noise filtering for contrast improvement. The vein pattern was extracted using repeated line tracking and dimensionality reduction using principal components analysis to generate the feature vector. A ‘speeded-up robust features’ algorithm was used to determine the key points of interest and the Euclidean Distance was used to estimate similarity between database images. The results show that the use of a suitable number of principal components can improve the accuracy and reduce the computational overhead of the verification system

    Future and potential spending on health 2015-40: Development assistance for health, and government, prepaid private, and out-of-pocket health spending in 184 countries

    Get PDF
    Background: The amount of resources, particularly prepaid resources, available for health can affect access to health care and health outcomes. Although health spending tends to increase with economic development, tremendous variation exists among health financing systems. Estimates of future spending can be beneficial for policy makers and planners, and can identify financing gaps. In this study, we estimate future gross domestic product (GDP), all-sector government spending, and health spending disaggregated by source, and we compare expected future spending to potential future spending. Methods: We extracted GDP, government spending in 184 countries from 1980-2015, and health spend data from 1995-2014. We used a series of ensemble models to estimate future GDP, all-sector government spending, development assistance for health, and government, out-of-pocket, and prepaid private health spending through 2040. We used frontier analyses to identify patterns exhibited by the countries that dedicate the most funding to health, and used these frontiers to estimate potential health spending for each low-income or middle-income country. All estimates are inflation and purchasing power adjusted. Findings: We estimated that global spending on health will increase from US9.21trillionin2014to9.21 trillion in 2014 to 24.24 trillion (uncertainty interval [UI] 20.47-29.72) in 2040. We expect per capita health spending to increase fastest in upper-middle-income countries, at 5.3% (UI 4.1-6.8) per year. This growth is driven by continued growth in GDP, government spending, and government health spending. Lower-middle income countries are expected to grow at 4.2% (3.8-4.9). High-income countries are expected to grow at 2.1% (UI 1.8-2.4) and low-income countries are expected to grow at 1.8% (1.0-2.8). Despite this growth, health spending per capita in low-income countries is expected to remain low, at 154(UI133181)percapitain2030and154 (UI 133-181) per capita in 2030 and 195 (157-258) per capita in 2040. Increases in national health spending to reach the level of the countries who spend the most on health, relative to their level of economic development, would mean $321 (157-258) per capita was available for health in 2040 in low-income countries. Interpretation: Health spending is associated with economic development but past trends and relationships suggest that spending will remain variable, and low in some low-resource settings. Policy change could lead to increased health spending, although for the poorest countries external support might remain essential

    Image fusion based multi resolution and frequency partition discrete cosine transform for palm vein recognition

    Get PDF
    The rapid growth of technology has increased the demand for automated security systems. Due to the accessibility of the palm region and the unique characteristics of each individual's palm vein features, such biometrics have been receiving particular attention. In the published research relating to palm vein biometrics, usually only a single image is used to supply the data for recognition purposes. Previous experimental work has demonstrated that the fusion of multiple images is able to provide richer feature information resulting in an improved classification performance. However, although most of the image fusion techniques are able to preserve the vein pattern, the fused image is often blurred, the colors are distorted and the spatial resolution reduced. In this paper, the multi-resolution discrete cosine transform (MRDCT) and frequency partition DCT (FPDCT) image fusion are applied and are able to extract the finer details of vein patterns while reducing the presence of noise in the image. The performance shows that the use of MRDCT and FPDCT was able to improve recognition rate compared to using a single image. The equal error rate improvement is also significant, falling to 9% in 700nm image, 7% in 850nm image and 6% in 940nm image

    Physical and photophysical properties of a linear copper(I) complex of a bulky acenapthene-based NHC ligand

    Get PDF
    CFRM and EZ-C wish to thank the Engineering and Physical Sciences Research Council (EP/M02105X/1 and EP/R035164/1) for financial support. We would like to thank the Engineering and Physical Sciences Research Council and CRITICAT Centre for Doctoral Training for financial support (Ph.D. studentship to B. H.; EP/L016419/1).We report the first example of a charge-neutral linear 2-coordinate copper(I) complex bearing a sterically demanding acenaphthoimidazolylidene-based N-heterocyclic carbene ligand. The identity and geometry of the complex was confirmed by single-crystal XRD (X-Ray Diffraction) analysis. The complex is poorly emissive at room temperature, showing either ligand-centered (LC) emission at around 340 nm when excited at 300 nm or ligand-to-ligand charge-transfer (LLCT) emission at around 540 nm when excited at 420 nm; in chloroform, dual emission is observed upon photoexcitation at 300 nm. Nanosecond emission lifetimes were recorded for these processes. This is the first example of emissive linear copper(I) complexes containing this bulky NHC ligand.PostprintPeer reviewe

    An Integrated Approach to Understand Relationships Between Shallow Water Benthic Community Structure and Ecosystem Function SERDP Project SI-1335

    Get PDF
    Human activities along our nation\u27s coasts often lead to habitat modification, pollution, and overexploitation of living resources in coastal and estuarine waters (U.S. Commission on Ocean Policy 2004). Coastal areas are the most developed regions of the United States. In addition to recreational and leisure activities, these areas support commercial fishing, aquaculture, shipping, and defense activities. Numerous human activities can have detrimental effects on biodiversity and the provision of ecosystem services that support and sustain human populations. Given their proximity to the land and human population centers, nearshore estuarine ecosystems are especially vulnerable. Effective management can be improved with a better understanding of relationships between ecological integrity and human pressures in these ecosystems (National Estuary Program 2007). Ecologists, coastal managers, and policy-makers are working together to develop better ways to measure and manage human effects on estuarine and coastal ecosystems. Management strategies can be framed in the context of human actions (pressure or stressor), resulting effects on community structure and ecosystem functions (state or condition), and management response

    Analysis of two [2]catenanes based on electron densities from invariom refinement and results from DFT calculations

    Get PDF
    The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support by project DI 921/6-1.Catenanes are of considerable interest as potential building blocks for molecular machines. The simplest [2]catenanes, Hopf links, consist of two macrocycles that are mechanically interlocked. This unusual architecture cannot be opened without breaking at least one covalent bond. Based on these structural characteristics, unusual properties on Hirshfeld or electrostatic potential surfaces could be expected. For a comparison of their structural and electronic properties, the electron densities (EDs) of two [2]catenanes, coded H22 and H4L7 in the original papers, were examined after application of the invariom formalism, relying on X-ray diffraction data collected earlier. The obtained electron density distributions were subjected to an analysis using the QTAIM formalism to yield bond and atomic properties. Moreover, molecular Hirshfeld surfaces and electrostatic potentials (ESP) were calculated. There are different types of intra- and intermolecular interactions in these two [2]catenanes. In addition to classical N-H···N and C-H···O hydrogen bonds, various types of π···π interactions in H22 and in H4L7 exist. Most of them are verified by local ED concentrations visible on the corresponding Hirshfeld surfaces, except for the parallel π···π interactions in H22, which are either too weak or too diffuse to generate an ED signal on the Hirshfeld surface between the contributing aromatic rings. The electrostatic potentials (ESPs) were calculated and displayed on molecular surfaces. The interaction in the cavity of one macrocycle with the penetrated fragment of the second one was examined and it was found that corresponding to the above-mentioned contacts attractive and repulsive interactions exist. Additionally the ED was examined using results of density functional calculations, including non-covalent interaction index (NCI) and electron localizability indicator (ELI-D) surface analysis, complementing experimental findings.Publisher PDFPeer reviewe

    Modulator-Controlled Synthesis of Microporous STA-26, an Interpenetrated 8,3-Connected Zirconium MOF with the the-i Topology, and its Reversible Lattice Shift

    Get PDF
    A fully interpenetrated 8,3-connected zirconium MOF with the the-i topology type, STA-26 (St Andrews porous material-26), has been prepared using the 4,4′,4“-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TMTB) tritopic linker with formic acid as a modulating agent. In the as-prepared form STA-26 possesses Im (Formula presented.) m symmetry compared with the Pm (Formula presented.) m symmetry of the non-interpenetrated analogue, NU-1200, prepared using benzoic acid as a modulator. Upon removal of residual solvent there is a shift between the interpenetrating lattices and a resultant symmetry change to Cmcm which is fully reversible. This is observed by X-ray diffraction and 13C MAS NMR is also found to be remarkably sensitive to the structural transition. Furthermore, heating STA-26(Zr) in vacuum dehydroxylates the Zr 6 nodes leaving coordinatively unsaturated Zr 4+ sites, as shown by IR spectroscopy using CO and CD 3CN as probe molecules. Nitrogen adsorption at 77 K together with grand canonical Monte Carlo simulations confirms a microporous, fully interpenetrated, structure with pore volume 0.53 cm 3 g −1 while CO 2 adsorption at 196 K reaches 300 cm 3 STP g −1 at 1 bar. While the pore volume is smaller than that of its non-interpenetrated mesoporous analogue, interpenetration makes the structure more stable to moisture adsorption and introduces shape selectivity in adsorption. </p

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore