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Abstract—The rapid growth of technology has increased the 
demand for automated security systems. Due to the accessibility 
of the palm region and the unique characteristics of each 
individual’s palm vein features, such biometrics have been 
receiving particular attention. In the published research 
relating to palm vein biometrics, usually only a single image is 
used to supply the data for recognition purposes. Previous 
experimental work has demonstrated that the fusion of multiple 
images is able to provide richer feature information resulting in 
an improved classification performance. However, although 
most of the image fusion techniques are able to preserve the vein 
pattern, the fused image is often blurred, the colors are distorted 
and the spatial resolution reduced. In this paper, the multi-
resolution discrete cosine transform (MRDCT) and frequency 
partition DCT (FPDCT) image fusion are applied and are able 
to extract the finer details of vein patterns while reducing the 
presence of noise in the image. The performance shows that the 
use of MRDCT and FPDCT was able to improve recognition 
rate compared to using a single image. The equal error rate 
improvement is also significant, falling to 9% in 700nm image, 
7% in 850nm image and 6% in 940nm image. 
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I.  INTRODUCTION 
Biometrics can play a crucial role in protecting personal 

information and the prevention of identity theft. Current 
identification systems still use ID cards, passwords or security 
numbers that risk being forgotten, forged or stolen. These 
methods are now being gradually replaced by biometric 
methods that capture an individual’s physical and behavioral 
characteristics and so reduce the risk of fraud arising due to 
forgery or theft. A number of different characteristics have 
been used for biometrics, such as fingerprints, voice, veins or 
signature patterns.  

Vein patterns have been found to be unique to individuals 
and are sufficiently distinctive that even the vein patterns of 
identical twins can be distinguished. Consequently, vein 
recognition is a promising method for identifying individuals 
for security purposes and has become a popular approach for 
investigation by a number of researchers. Palm veins are 
difficult to forge as they are found underneath the skin, 
recognition can be formulated to be robust to axial and scales 

changes and can be implemented in a contactless manner 
thereby reducing the possibility of cross-contamination. 

In the last two decades, considerable research has been 
carried out to investigate the potential advantages of the fusion 
of multi focus and multispectral images. The increase in 
number, performance and reduced costs of sensors has led to 
a growth of the interest in sensor and data fusion for research 
purposes and in a number of application areas. Data fusion is 
widely adopted term describing the joint interpretation of data 
obtained from more than one input in order to generate 
enhanced information for decision making [1]. In image 
processing, fusion can be performed at the signal, feature and 
decision stages. Signal level fusion is performed on the pixels 
supplied in the visual information to form a single fused 
image. This type of fusion includes multi-focus image fusion, 
an area that has attracted much recent research investigation. 
Feature level fusion involves the fusion of features, labels or 
descriptor information that has been extracted from each input 
image. Decision-level fusion involves the fusion of high-level 
information extracted from the results of processing carried 
out on the separate images. 

II. RELATED WORK 
The aim of image data fusion is to obtain additional 

information by integrating the data obtained from individual 
sensors. Image data fusion increases the dimensionality of the 
data space, but often improves the quality of deduced 
information which is provided with less ambiguity and 
reduced system vulnerability. This area of fusion has been the 
focus of much research, but there is still the scope for further 
innovation [2]. 

Wavelet-based image fusion has been proposed for a 
multispectral palm print recognition system [3]. An infrared 
image was captured using a device that was able to adjust the 
images under different illumination conditions and the 
wavelet transform was applied to images with different types 
of channel to obtain a combined image. A competitive coding 
scheme was used as the matching method. This research has 
been extended so that the extraction and matching stages are 
formed of their own spectral bands of the multispectral palm 
image. A simple sum rule is then used on matching score level 
fusion. Feature-band selection based palm print recognition 
was proposed in which each single band is compared using the 
extracted statistical features and score-level fusion was 
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adopted to determine the best combination from the 
alternatives available. A novel palm print verification method 
implemented by fusing palm images at a low level using the 
wavelet transform was proposed in [3]. The approach carried 
out image fusion in the wavelet domain, but image fusion 
using the discrete wavelet transform (DWT) requires many 
decomposition levels needing a large number of calculations 
and substantial memory capacity, and its implementation 
therefore takes considerable execution time. Although the 
DWT was able to improve recognition quality, it was still 
unable to provide a good representation of long edges in the 
fused result [4]. 

An image fusion algorithm that uses the energy of 
Laplacian (EOL) has been proposed, in which suitable input 
image regions are selected by determining their EOLs which 
is related to the portions of the image that are more in focus. 
A majority filter was used to ensure that regions in better focus 
influence the decisions taken regarding the selection of 
neighboring pixels and a guided filter generated an edge 
preserving process to reduce the block effects. The resulting 
image was shown to be de-blurred compared with the original 
images and exhibited an improved visual appearance 
compared to alternative approaches considered. Although this 
method was able to extract local and sharp intensity changes 
in images, it was also found that if one of the input images was 
of good clarity, the resulting image would often exhibit 
unpleasant visual artifacts in some regions [5]. 

The DCT has been widely used in image processing and 
pattern recognition because of its energy properties and high 
performance with respect to low order signals [6], with the 
DCT requiring less energy than an equivalent representation 
by the discrete wavelet transform (DWT). Several researchers 
have used DCT in image fusion as it is efficient due to the 
computational energy being much less than the transmission 
energy. DCT image fusion is mostly obtained by taking the 
average of all the coefficients in the images and so the fused 
result is likely to exhibit side effects such as blurring or 
blocking artifacts which reduce the quality of the image [4].  

In this paper, a novel image fusion based on Multi 
Resolution DCT (MRDCT) and Frequency Partition DCT 
(FPDCT) are presented. DCT has been proven to perform well 
in image compression and is widely used in image 
preprocessing applications. A local feature-invariant method 
will be used to extract features from the vein images. By 
matching point-like features, a similarity distance measure 
can be calculated to perform classification and method was 
used to evaluate the recognition rate both before and after 
image fusion had been applied. Section III presents the 
process of the proposed method, involving the use of a 
subsection image database, the preprocessing stage, image 
fusion, feature extraction, mismatching point removal and 
feature matching, Section IV gives the experimental results 
and analysis and Section V provides the conclusions. 

III. METHODOLOGY 
This paper will focus on the effect that using DCT image 

fusion has on the recognition rate and extends previous work 
by the authors [7]. Fig. 1 shows the proposed method and it is 
divided into four steps. Images are acquired from the CASIA 

database and the preprocessing stage is similar to that used in 
previous work. The method proposed concentrates on image 
fusion techniques where the fused image is produced by 
integrating multiple image sources and is passed to the 
verification engine for performance evaluation [8]. 

 
Figure 1.  Flowchart of the proposed method. 

A. Discrete Cosine Transform (DCT) image fusion 
The DCT is used to express image data points at different 

frequencies by using the sum of cosine functions. The 
majority of DCT coefficients are focused on the low 
frequency area due to its energy compactness properties at 
different frequencies and the edges in the image contributes to 
high frequency coefficients [9].  

The one dimensional (1D) DCT and inverse DCT (IDCT) 
are defined in equations (1) and (2) respectively. The DCT 
coefficient is obtained by using equation (1) and averaging all 
samples in the sequences and the remaining DCT coefficients 
obtained in both equations are real and provide weights for a 
set of discrete-time sinusoids. In order to extend to the 2D 
DCT, the 1D DCT formulae can be extended. The 2D DCT 
and 2D IDCT operate on the rows and columns of the image 
and are shown in equations (3) and (4) respectively. Fig. 2 
shows the implementation of the 2D DCT, where column 
coefficients are determined first followed by the row 
coefficients second. 
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where 𝛼(𝑘1) and 𝛼(𝑘.) are similar to Equation (2). 
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Figure 2.  Computation of 2D DCT using separate (a) column and (b) row 

properties. 

 
Fig. 3 shows a simple image fusion process using the DCT 

and the IDCT. Here, an input image is divided into non-
overlapping blocks of size 8x8 and then transformed into DCT 
coefficients. A fusion rule is then applied in the DCT 
coefficient of each block. Consecutive 8x8 DCT domain 
blocks are then converted into the spatial domain by applying 
IDCT [10]. 

 

 
 

Figure 3.  Image fusion process using DCT. 

 

B. Frequency Partition Discrete Cosine Transform 
(FPDCT) 
The FPDCT will partition the DCT coefficients into low 

frequency (LF) and high frequency (HF) regions. Partition is 
carried out according to the partition factor f by using the 
energy compaction property of DCT coefficients. The 
partition factor f is a value in the range 0 to 1 with a resolution 
0.1, thereby defining 10 distinctive levels. The image is down 
sampled and by selecting the frequency level according to the 
pixel intensity, the image is fused according to Equation (5). 
The fused image is then up sampled to its original size using 
the IDCT. Fig. 4 shows the partition method carried out to 
partition DCT coefficients into the LF and HF regions [11]. 

 

 
Figure 4.  Separation of LF and HF coefficients. 

 

C. Multi-resolution DCT (MRDCT) 
In MRDCT, the DCT coefficients are filtered by low-pass 

and high-pass finite impulse filters (FIRs). The number of 
DCT coefficients will be separated into two separate halves 
and each half is filtered by both high-pass and low-pass filters. 
The output filter is then decimated by a factor of two to 
achieve the first-level decomposition. Second-level 
decomposition repeats the operations of the first level by using 
the decimated high-pass and low-pass coefficients. Further 
levels of decomposition are successively implemented by 
repeating the procedure in low-pass and high-pass filters [10]. 
Fig. 5 shows the outcome as the DCT coefficients are 
processed by low-pass and high-pass filters at each level. 
MRDCT has characteristics similar to the wavelet transform 
in the manner in which the operations are organized and the 
representations used for its coefficients [6]. 

 
 

 
 

Figure 5.  Multi resolution image analysis using DCT. 

 

 



IV. RESULTS AND DISCUSSION 

A. Experimental setup 
This experiments presented in this section evaluate the 

impact of performing image fusion on the palm vein 
recognition rate. The work has used the CASIA database that 
contains data from 100 different subjects each of which has 
provided six images. In this experiment, five images from 100 
subjects were used for testing and there were a total of 356400 
outer and 3600 inner point to point matches. Equal Error Rate 
(EER) was plotted for all the different sample variations. 

B. Image fusion techniques 
Fig. 6 to 9 show the results from four fusion techniques, 

namely FPDCT, MRDCT, wavelet and EOL. The fusion 
techniques were all applied at wavelengths of 700nm, 850nm 
and 940nm to example palm vein images. In each of the 
figures, images (a) to (c) are the original images at the three 
wavelength spectrum of 700nm, 850nm and 940nm 
respectively, images (d) to (g) show the fusion techniques 
implemented respectively between the 700nm with 850nm 
images, the 700nm and 940nm images, the 850nm and 940nm 
images and between all three images.  
 

 
(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 6.  (a) 700nm palm vein image. (b) 850nm palm vein image.        
(c) 940nm palm vein image. (d) FPDCT fusion with 700nm and 850nm 

image. (e) FPDCT fusion with 700nm and 940nm image. (f) FPDCT fusion 
with 850nm and 940nm image. (g) FPDCT fusion with all image above. 

 
(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 7.   (a) 700nm palm vein image. (b) 850nm palm vein image.       
(c) 940nm palm vein image. (d) MRDCT fusion with 700nm and 850nm 
image. (e) MRDCT fusion with 700nm and 940nm image. (f) MRDCT 

fusion with 850nm and 940nm image. (g) MRDCT fusion with all image 
above. 

 
(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 8.   (a) 700nm palm vein image. (b) 850nm palm vein image.       
(c) 940nm palm vein image. (d) Wavelet fusion with 700nm and 850nm 
image. (e) Wavelet fusion with 700nm and 940nm image. (f) Wavelet 

fusion with 850nm and 940nm image. (g) Wavelet fusion with all image 
above. 

 
(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 9.   (a) 700nm palm vein image. (b) 850nm palm vein image.       
(c) 940nm palm vein image. (d) EOL fusion with 700nm and 850nm 

image. (e) EOL fusion with 700nm and 940nm image. (f) EOL fusion with 
850nm and 940nm image. (g) EOL fusion with all image above. 

 
For all the fusion images obtained for all four fusion 

techniques, it can be clearly seen that right hand side of the 
image produced a better visual effect. The original image with 
wavelength 850nm has a better vein pattern on the right hand 
side while the 940nm wavelength and 700nm wavelength 
images have a blurred vein pattern. The dark area on the right-
hand side has become de-blurred once the fusion techniques 
have been applied. This can be assumed to be because the 
fusion techniques have enhanced the darkness area by fusion 
with the second image that has no area of darkness on the right 
hand side. Some of the areas on the left hand side of the image 
have also been enhanced. The fusion images show the finer 
details of vein patterns and while a number of the darker areas 
have also been enhanced by fusion with the first image. An 
explanation is that the fusion techniques are able to recover 
the information from other images in order to replace the 
darkened areas in another of the fused images. A similar trend 
can be found for other image fusion techniques. Hence, it 
appears that image fusion enhances and preserves information 
without creating additional unwanted noise. However, in EOL 
and wavelet based image fusion, the fusion image is able to 
obtain the vein patterns but the pattern shows some artifacts.  



  
(a) (b) 

  
(c) (d) 

Figure 10.  Equal Error Rate of all fusion techniques (a) Fusion in 700nm and 850nm, (b) Fusion in 700nm and 940nm, (c) Fusion in 850nm and 940nm, (d) 
Fusion in 700nm, 850nm and 940nm image. 

 
Fig. 10 shows the equal error rate (EER) rates obtained 

when pairs of image fusion wavelengths have been combined 
and where all the three wavelengths have been combined. 
MRDCT achieved the best performance when 700nm with 
850nm images were combined and when 850nm with 940nm 
images were combined. EOL achieved the best performance 
for fusion of the 700nm with 940nm images. In general, it can 
be seen that the results obtained from EER improve once the 
image fusion has been applied as well as there being an 
increase in the number of matching points. It can be concluded 
that as the number of matching point is increased, the 
matching percentage on the image will also increase and so 
the possibility of a genuine match will be greater. In each of 
the FPDCT, the MRDCT and the wavelet transform, the EER 
rate is around 9.5% and this decreases only slightly by 0.5% 
compared to the results obtained from the 700nm with 850nm 
fusion. However, EOL achieved the result that improved by 
2% for the 700nm with 940nm fusion compared with the 
700nm with 850nm image fusion. 

Table I and II shows the EER and area under curve (AUC) 
that result from the use of the different image fusion 
techniques. However, the performance of the fusion of the 
850nm with 940nm images is very similar to that obtained 
from the combination of the three images. The performance 
shows a degradation between 0.5% and 1.5% when all images 
are fused, perhaps because the fusion is adversely affected by 

the fusion with the 700nm image. In MRDCT, a different 
result is apparent in which the results are improved by 0.3% 
compared to the 850nm with 940nm fusion. By comparing the 
AUC curve, the classification is improved by using MRDCT 
with the fusion of the three images and this achieved the 
highest classification rate of 98.11%. It can be seen that 
MRDCT is the most suitable technique for use in palm vein 
recognition when all three types of image are fused. 

TABLE I.  EQUAL ERROR RATE IN 700NM,850NM AND 940NM 
IMAGE 

Method 
700nm 

and 
850nm 

700nm 
and 

940nm 

850nm 
and 

940nm 

700nm, 
850nm 

and 
940nm 

MRDCT 8.83 9.65 5.83 5.53 

FPDCT 9.33 9.56 6.47 6.76 

Wavelet 9.47 9.75 6.16 6.83 

EOL 10.47 8.47 6.99 8.64 

 
 
 



TABLE II.  AREA UNDER CURVE (AUC) IN 700NM,850NM AND 
940NM IMAGE 

Method 
700nm 

and 
850nm 

700nm 
and 

940nm 

850nm 
and 

940nm 

700nm, 
850nm 

and 
940nm 

MRDCT 96.23 95.77 97.91 98.11 

FPDCT 95.95 95.90 97.61 97.57 

Wavelet 95.91 95.73 97.68 97.50 

EOL 95.36 96.70 97.43 96.55 

 

V. CONCLUSION 
Image fusion has a major impact on the recognition 

performance in the palm vein recognition system. This paper 
has focused on the application of image fusion techniques that 
affect the recognition rate. Image fusion techniques are able 
to recover vein information with a reduced presence of noise. 
Vein patterns become more obvious and it becomes possible 
to observe them by visual inspection. Although several DCT 
fusion methods have been introduced, DCT has been shown 
to provide good results for image fusion when implementing 
a palm vein recognition system. 

MRDCT achieved the best performance rate, the lowest 
EER rate of 5.53% and 98.11% in the AUC curve. MRDCT 
outperformed the other fusion techniques in both dual and 
triple combinations of wavelengths for image fusion. MRDCT 
provided improvements of almost 9% for a 700nm image, 7% 
for an 850nm image and 6% for a 940nm image. This method 
is able to preserve well the detailed information without 
producing any unpleasing effects on the image.  
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