43 research outputs found

    EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Get PDF
    This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Analysis of shared heritability in common disorders of the brain

    Get PDF
    ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    APLICACIÓN DEL ESPECTROGRAMA MODIFICADO PARA LA IDENTIFICACIÓN DE MÚLTIPLES FALLOS COMBINADOS EN MOTORES DE INDUCCIÓN ALIMENTADOS POR INVERSORES (THE APPLICATION OF MODIFIED SPECTROGRAM FOR IDENTIFYING MULTIPLE COMBINED FAULTS IN INVERTER-FED INDUCTION MOTORS)

    Get PDF
    Resumen Actualmente, las industrias utilizan motores de inducción alimentados con variadores de velocidad, los cuales generan componentes armónicos en la corriente del estator. Por lo tanto, es importante la detección y el diagnóstico temprano de fallas en el motor de inducción para su uso en el mantenimiento basado en condiciones. Sin embargo, la mayoría de los métodos se ocupan de un único fallo. La contribución de esta investigación es la aplicación de una estrategia de monitoreo de condición que puede realizar evaluaciones precisas y confiables de la presencia de condiciones de falla única o combinada en motores de inducción. El artículo presenta una descripción del estado del arte en el monitoreo de fallas y establece los métodos usados para la identificación de estas fallas, usando el método del espectrograma reasignado. Se analizan tres tipos de fallas y en los resultados pueden verse la adecuada identificación de estas usando espectros de tiempo-frecuencia. Los resultados muestran que el método del espectrograma reasignado podría utilizarse como técnica de detección determinista; donde las frecuencias de los fallos son muy cercanas a las reportadas analíticamente en la literatura. Palabras Clave: Monitoreo de la condición, diagnóstico de fallas, motores de inducción, espectrograma reasignado, análisis espectral. Abstract Currently, industries use induction motors fed with variable speed drives, which generate harmonic components in the stator current. Therefore, it is important early failure detection and diagnosis in induction motor for use in condition-based maintenance. However, most of the methods deal with a single fault, only. In electrical equipment with multiple faulty conditions present; it is critical to differentiate between the single or combined faulty conditions; so, it is important to differentiate between these. The contribution of this research is the application of a condition monitoring strategy that can make accurate and reliable assessments of the presence of single or combined fault conditions in induction motors. The article presents a description of the state of the art in fault monitoring and establishes the methods used for the identification of these faults, using the reassigned spectrogram method. Three types of faults are analyzed, and the results show the proper identification of these faults using time-frequency spectra. Results show the reassigned spectrogram method could be used as a deterministic detection technique; where the fault frequencies are very close to those analytically reported in literature. Keywords: Condition monitoring, Fault diagnosis, Induction motors, Reassigned Spectrogram, Spectral analysis

    Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors

    No full text
    Empirical mode decomposition (EMD)-based methods are powerful digital signal processing techniques because they do not need a priori information of the target signal due to their intrinsic adaptive behavior. Moreover, they can deal with non-linear and non-stationary signals. This paper presents the field programmable gate array (FPGA) implementation for the complete ensemble empirical mode decomposition (CEEMD) method, which is applied to the condition monitoring of an induction motor. The CEEMD method is chosen since it overcomes the performance of EMD and EEMD (ensemble empirical mode decomposition) methods. As a first application of the proposed FPGA-based system, the proposal is used as a processing technique for feature extraction in order to detect and classify broken rotor bar faults in induction motors. In order to obtain a complete online monitoring system, the feature extraction and classification modules are also implemented on the FPGA. Results show that an average effectiveness of 96% is obtained during the fault detection

    Vibration Signal Processing-Based Detection of Short-Circuited Turns in Transformers: A Nonlinear Mode Decomposition Approach

    No full text
    Transformers are vital and indispensable elements in electrical systems, and therefore, their correct operation is fundamental; despite being robust electrical machines, they are susceptible to present different types of faults during their service life. Although there are different faults, the fault of short-circuited turns (SCTs) has attracted the interest of many researchers around the world since the windings in a transformer are one of the most vulnerable parts. In this regard, several works in literature have analyzed the vibration signals that generate a transformer as a source of information to carry out fault diagnosis; however this analysis is not an easy task since the information associated with the fault is embedded in high level noise. This problem becomes more difficult when low levels of fault severity are considered. In this work, as the main contribution, the nonlinear mode decomposition (NMD) method is investigated as a potential signal processing technique to extract features from vibration signals, and thus, detect SCTs in transformers, even in early stages, i.e., low levels of fault severity. Also, the instantaneous root mean square (RMS) value computed using the Hilbert transform is proposed as a fault indicator, demonstrating to be sensitive to fault severity. Finally, a fuzzy logic system is developed for automatic fault diagnosis. To test the proposal, a modified transformer representing diverse levels of SCTs is used. These levels consist of 0 (healthy condition), 5, 10, 15, 20, and 25 SCTs. Results demonstrate the capability of the proposal to extract features from vibration signals and perform automatic fault diagnosis
    corecore