141 research outputs found
Delay-Accuracy Tradeoff in Opportunistic Time-of-Arrival Localization
While designing a positioning network, the localization performance is traditionally the main concern. However, collection of measurements together with channel access methods require a nonzero time, causing a delay experienced by network nodes. This fact is usually neglected in the positioning-related literature. In terms of the delay-accuracy tradeoff, broadcast schemes have an advantage over unicast, provided nodes can be properly synchronized. In this letter, we analyze the delay-accuracy tradeoff for localization schemes in which the position estimates are obtained based on broadcasted ranging signals. We find that for dense networks, the tradeoff is the same for cooperative and noncooperative networks, and cannot exceed a certain threshold value
Multimodality in galaxy clusters from SDSS DR8: substructure and velocity distribution
We search for the presence of substructure, a non-Gaussian, asymmetrical
velocity distribution of galaxies, and large peculiar velocities of the main
galaxies in galaxy clusters with at least 50 member galaxies, drawn from the
SDSS DR8. We employ a number of 3D, 2D, and 1D tests to analyse the
distribution of galaxies in clusters: 3D normal mixture modelling, the
Dressler-Shectman test, the Anderson-Darling and Shapiro-Wilk tests and others.
We find the peculiar velocities of the main galaxies, and use principal
component analysis to characterise our results. More than 80% of the clusters
in our sample have substructure according to 3D normal mixture modelling, the
Dressler-Shectman (DS) test shows substructure in about 70% of the clusters.
The median value of the peculiar velocities of the main galaxies in clusters is
206 km/s (41% of the rms velocity). The velocities of galaxies in more than 20%
of the clusters show significant non-Gaussianity. While multidimensional normal
mixture modelling is more sensitive than the DS test in resolving substructure
in the sky distribution of cluster galaxies, the DS test determines better
substructure expressed as tails in the velocity distribution of galaxies.
Richer, larger, and more luminous clusters have larger amount of substructure
and larger (compared to the rms velocity) peculiar velocities of the main
galaxies. Principal component analysis of both the substructure indicators and
the physical parameters of clusters shows that galaxy clusters are complicated
objects, the properties of which cannot be explained with a small number of
parameters or delimited by one single test. The presence of substructure, the
non-Gaussian velocity distributions, as well as the large peculiar velocities
of the main galaxies, shows that most of the clusters in our sample are
dynamically young.Comment: 15 pages, 11 figures, 2 online tables, accepted for publication in
Astronomy and Astrophysic
Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network
We study the relations between the multimodality of galaxy clusters drawn
from the SDSS DR8 and the environment where they reside. As cluster environment
we consider the global luminosity density field, supercluster membership, and
supercluster morphology. We use 3D normal mixture modelling, the
Dressler-Shectman test, and the peculiar velocity of cluster main galaxies as
signatures of multimodality of clusters. We calculate the luminosity density
field to study the environmental densities around clusters, and to find
superclusters where clusters reside. We determine the morphology of
superclusters with the Minkowski functionals and compare the properties of
clusters in superclusters of different morphology. We apply principal component
analysis to study the relations between the multimodality parametres of
clusters and their environment simultaneously. We find that multimodal clusters
reside in higher density environment than unimodal clusters. Clusters in
superclusters have higher probability to have substructure than isolated
clusters. The superclusters can be divided into two main morphological types,
spiders and filaments. Clusters in superclusters of spider morphology have
higher probabilities to have substructure and larger peculiar velocities of
their main galaxies than clusters in superclusters of filament morphology. The
most luminous clusters are located in the high-density cores of rich
superclusters. Five of seven most luminous clusters, and five of seven most
multimodal clusters reside in spider-type superclusters; four of seven most
unimodal clusters reside in filament-type superclusters. Our study shows the
importance of the role of superclusters as high density environment which
affects the properties of galaxy systems in them.Comment: 16 pages, 12 figures, 2 online tables, accepted for publication in
Astronomy and Astrophysic
Using arbitration as a method for disputes resolution in Malaysia’s construction industry
Disputes in construction industry are a common thing and sometimes could not be avoided.Disputes majorly arise from misinterpretation or conflicts of engineering documents at any time during the execution of a contract.There are many methods/techniques used in resolving disputes.One of the popular recommendations is arbitration.This aim of this study is to study the process and procedures of arbitration as a method for disputes resolution, to identify and also analyze the causes of disputes and its solution techniques in construction industry.The questionnaires will be distributed by hand to all types of contractors limited to area in Kuala Lumpur and Kuantan. The data from the questionnaire survey will be analyzed in percentage and value of index by using frequency analysis and average index analysis.This study will show that many factors can contribute to disputes and its solution techniques.From the study,it is found that the cause of failure of planning and executing project is the main factor in construction dispute.Furthermore,negotiation is the best solution technique in construction dispute.In conclusion, determining the factors that contribute to disputes is important in order to recognize what is the suitable technique to resolve it as it is necessary for contractors that involved in Malaysian construction industry.Moreover,it is hoped that these findings can be used to overcome disputes that cause all the problems in Malaysian construction industry and hopefully will give new point of view on arbitration as a resolution technique to the contractors and construction industry in Malaysia
Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study
<p>Abstract</p> <p>Background</p> <p>Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces.</p> <p>A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied.</p> <p>Methods</p> <p>The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed.</p> <p>Results</p> <p>The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw), 564,05 N (Group 2; 9 × 28), 614,95 N (Group 3; 9 × 35), 651,14 N (Group 4; 10 × 28) and 664,99 (Group 5; 10 × 35). No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P < 0.001).</p> <p>Conclusions</p> <p>Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm) do not achieve optimal fixation and should be implanted only with special requirements.</p
The thalamus and its subnuclei—a gateway to obsessive-compulsive disorder
Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T-1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered (https://osf.io/73dvy) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status
Recommended from our members
Genome-Wide Association Study in Obsessive-Compulsive Disorder: Results from the OCGAS
Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive thoughts and urges and repetitive, intentional behaviors that cause significant distress and impair functioning. The OCD Collaborative Genetics Association Study (OCGAS) is comprised of comprehensively assessed OCD patients, with an early age of OCD onset. After application of a stringent quality control protocol, a total of 1 065 families (containing 1 406 patients with OCD), combined with population-based samples (resulting in a total sample of 5 061 individuals), were studied. An integrative analyses pipeline was utilized, involving association testing at SNP- and gene-levels (via a hybrid approach that allowed for combined analyses of the family- and population-based data). The smallest P-value was observed for a marker on chromosome 9 (near PTPRD, P=4.13×10−7). Pre-synaptic PTPRD promotes the differentiation of glutamatergic synapses and interacts with SLITRK3. Together, both proteins selectively regulate the development of inhibitory GABAergic synapses. Although no SNPs were identified as associated with OCD at genome-wide significance level, follow-up analyses of GWAS signals from a previously published OCD study identified significant enrichment (P=0.0176). Secondary analyses of high confidence interaction partners of DLGAP1 and GRIK2 (both showing evidence for association in our follow-up and the original GWAS study) revealed a trend of association (P=0.075) for a set of genes such as NEUROD6, SV2A, GRIA4, SLC1A2, and PTPRD. Analyses at the gene-level revealed association of IQCK and C16orf88 (both P<1×10−6, experiment-wide significant), as well as OFCC1 (P=6.29×10−5). The suggestive findings in this study await replication in larger samples
Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders
Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe
Relatório de estágio em farmácia comunitária
Relatório de estágio realizado no âmbito do Mestrado Integrado em Ciências Farmacêuticas, apresentado à Faculdade de Farmácia da Universidade de Coimbr
- …