46 research outputs found
Interprofessional Simulation in Accredited Paramedic Programs
Introduction: Healthcare leaders advocate for interprofessional education as a means to promote collaborative practice, enhance interdisciplinary communication, and improve patient safety in the health professions. There is little evidence specific to interprofessional simulation in paramedic education. Methods: The National Association of EMS Educators (NAEMSE) surveyed paramedic programs that were accredited or in the process of becoming accredited. Program respondents were asked to characterize their resources and their use of those resources, and then were asked about their perceptions pertaining to simulation in their program. Chi-square analysis was used to compare characteristics of programs that participated in interdisciplinary simulation with those that did not. Results: Of the 389 of 638 (61%) paramedic program survey respondents, 44% (159 of 362) report interprofessional simulation. They perceived they used the right amount of simulation more frequently than other paramedic programs X2 (1, N=362) = 8.425, p X2 (1, N=362) = 11.751, pX2 (1, N=356) = 8.838, pX2 (1, N=362) = 4.704, pX2 (1, N=362) = 11.508 pX2 (1, N=362) = 5.495, pX2 (1, N=359) = 12.595, p\u3c0.01.Conclusion: This research suggests that paramedic programs conducting interdisciplinary simulation indicated they have greater access to resources and faculty training to support simulation
Beam tests of the trigger and digital processing electronics for the electromagnetic calorimeter of the CMS experiment
A prototype of the trigger and digital processing electronics for the electromagnetic calorimeter of the CMS experiment, coupled to a prototype of the PbWO4 crystal calorimeter, was tested during summer 96 in the H4 beamline at the CERN SPS. A very successful operation was achieved for this system, which runs in synchronous and pipelined mode at the LHC clock frequency, and performs the basic trigger and data acquisition functions needed in the CMS electromagnetic calorimeter. The performance of the trigger front-end electronics is well within the established requirements: a highly efficient bunch crossing identification ( > 99.9%), a good trigger energy resolution ( s/E ~9%/sq( E)+2%) and a highly efficient electron cluster shape identification ( ~99%) have been achieved. The FERMI digitizing system based on a dynamic analog compressor and a sampling ADC showed a very good perform ance, in particular the energy resolution for 150 GeV electrons was 0.54%, equal to the resolution obtained with a conventional charge integration ADC system
Energy Resolution Performance of the CMS Electromagnetic Calorimeter
The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25âŻyears of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Landmark Generation in HTN Planning
Landmarks (LMs) are state features that need to be made true or tasks that need to be contained in every solution of a planning problem. They are a valuable source of information in planning and can be exploited in various ways. LMs have been used both in classical and hierarchical planning, but while there is much work in classical planning, the techniques in hierarchical planning are less evolved. We introduce a novel LM generation method for Hierarchical Task Network (HTN) planning and show that it is sound and incomplete. We show that every complete approach is as hard as the co-class of the underlying HTN problem, i.e. coNP-hard for our setting (while our approach is in P). On a widely used benchmark set, our approach finds more than twice the number of landmarks than the approach from the literature. Though our focus is on LM generation, we show that the newly discovered landmarks bear information beneficial for solvers
Modeling Assistance for Hierarchical Planning: An Approach for Correcting Hierarchical Domains with Missing Actions
The complexity of modeling planning domains is a major obstacle for making automated planning techniques more accessible, raising the demand of tools for providing modeling assistance. In particular, tools that can automatically correct errors in a planning domain are of great importance. Previous works have devoted efforts to developing such approaches for correcting classical (non-hierarchical) domains. However, no approaches exist for hierarchical planning, which is what we offer here. More specifically, our approach takes as input a flawed hierarchical domain together with a plan known to be a solution but actually contradicting the domain (due to errors in the domain) and outputs corrections to the domain that add missing actions to the domain which turn the plan into a solution. The approach achieves this by compiling the problem of finding corrections to another hierarchical planning problem
Assessing the Expressivity of Planning Formalisms through the Comparison to Formal Languages
From a theoretical perspective, judging the expressivity of planning formalisms helps to understand the relationship of different representations and to infer theoretical properties. From a practical point of view, it is important to be able to choose the best formalism for a problem at hand, or to ponder the consequences of introducing new representation features. Most work on the expressivity is based either on compilation approaches, or on the computational complexity of the plan existence problem. Recently, we introduced a new notion of expressivity. It is based on comparing the structural complexity of the set of solutions to a planning problem by interpreting the set as a formal language and classifying it with respect to the Chomsky hierarchy. This is a more direct measure than the plan existence problem and enables also the comparison of formalisms that can not be compiled into each other. While existing work on that last approach focused on different hierarchical problem classes, this paper investigates STRIPS with and without conditional effects; though we also tighten some existing results on hierarchical formalisms. Our second contribution is a discussion on the language-based expressivity measure with respect to the other approaches
A Generic Method to Guide HTN Progression Search with Classical Heuristics
HTN planning combines actions that cause state transition with grammar-like decomposition of compound tasks that additionally restricts the structure of solutions. There are mainly two strategies to solve such planning problems: decomposition-based search in a plan space and progression-based search in a state space. Existing progression-based systems do either not rely on heuristics (e.g. SHOP2) or calculate their heuristics based on extended or modified models (e.g. GoDeL). Current heuristic planners for standard HTN models (e.g. PANDA) use decomposition-based search. Such systems represent search nodes more compactly due to maintaining a partial order between tasks, but they have no current state at hand during search. This makes the design of heuristics difficult. In this paper we present a progression-based heuristic HTN planning system: We (1) provide an improved progression algorithm, prove its correctness, and empirically show its efficiency gain; and (2) present an approach that allows to use arbitrary classical (non-hierarchical) heuristics in HTN planning. Our empirical evaluation shows that the resulting system outperforms the state-of-the-art in HTN planning