200 research outputs found

    Mapping the human cortical surface by combining quantitative T(1) with retinotopy

    Get PDF
    We combined quantitative relaxation rate (R1= 1/T1) mapping-to measure local myelination-with fMRI-based retinotopy. Gray-white and pial surfaces were reconstructed and used to sample R1 at different cortical depths. Like myelination, R1 decreased from deeper to superficial layers. R1 decreased passing from V1 and MT, to immediately surrounding areas, then to the angular gyrus. High R1 was correlated across the cortex with convex local curvature so the data was first "de-curved". By overlaying R1 and retinotopic maps, we found that many visual area borders were associated with significant R1 increases including V1, V3A, MT, V6, V6A, V8/VO1, FST, and VIP. Surprisingly, retinotopic MT occupied only the posterior portion of an oval-shaped lateral occipital R1 maximum. R1 maps were reproducible within individuals and comparable between subjects without intensity normalization, enabling multi-center studies of development, aging, and disease progression, and structure/function mapping in other modalities

    Whole brain comparative anatomy using connectivity blueprints

    Get PDF
    Comparing the brains of related species faces the challenges of establishing homologies whilst accommodating evolutionary specializations. Here we propose a general framework for understanding similarities and differences between the brains of primates. The approach uses white matter blueprints of the whole cortex based on a set of white matter tracts that can be anatomically matched across species. The blueprints provide a common reference space that allows us to navigate between brains of different species, identify homologous cortical areas, or to transform whole cortical maps from one species to the other. Specializations are cast within this framework as deviations between the species’ blueprints. We illustrate how this approach can be used to compare human and macaque brains

    Is bigger always better? The importance of cortical configuration with respect to cognitive ability

    Get PDF
    General cognitive ability (GCA) has substantial explanatory power for behavioral and health outcomes, but its cortical substrate is still not fully established. GCA is highly polygenic and research to date strongly suggests that its cortical substrate is highly polyregional. We show in map-based and region-of-interest-based analyses of adult twins that a complex cortical configuration underlies GCA. Having relatively greater surface area in evolutionary and developmentally high-expanded prefrontal, lateral temporal, and inferior parietal regions is positively correlated with GCA, whereas relatively greater surface area in low-expanded occipital, medial temporal, and motor cortices is negatively correlated with GCA. Essentially the opposite pattern holds for relative cortical thickness. The phenotypic positive-to-negative gradients in our cortical-GCA association maps were largely driven by a similar pattern of genetic associations. The patterns are consistent with regional cortical stretching whereby relatively greater surface area is related to relatively thinner cortex in high-expanded regions. Thus, the typical "bigger is better" view does not adequately capture cortical-GCA associations. Rather, cognitive ability is influenced by complex configurations of cortical development patterns that are strongly influenced by genetic factors. Optimal cognitive ability appears to be driven both by the absolute size and the polyregional configuration of the entire cortex rather than by small, circumscribed regions.Peer reviewe

    Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure

    Get PDF
    Measuring the structural composition of the cortex is critical to understanding typical development, yet few investigations in humans have charted markers in vivo that are sensitive to tissue microstructural attributes. Here, we used a well-validated quantitative MR protocol to measure four parameters (R1, MT, R2*, PD*) that differ in their sensitivity to facets of the tissue microstructural environment (R1, MT: myelin, macromolecular content; R2*: myelin, paramagnetic ions, i.e., iron; PD*: free water content). Mapping these parameters across cortical regions in a young adult cohort (18–39 years, N = 93) revealed expected patterns of increased macromolecular content as well as reduced tissue water content in primary and primary adjacent cortical regions. Mapping across cortical depth within regions showed decreased expression of myelin and related processes – but increased tissue water content – when progressing from the grey/white to the grey/pial boundary, in all regions. Charting developmental change in cortical microstructure cross-sectionally, we found that parameters with sensitivity to tissue myelin (R1 & MT) showed linear increases with age across frontal and parietal cortex (change 0.5–1.0% per year). Overlap of robust age effects for both parameters emerged in left inferior frontal, right parietal and bilateral pre-central regions. Our findings afford an improved understanding of ontogeny in early adulthood and offer normative quantitative MR data for inter- and intra-cortical composition, which may be used as benchmarks in further studies

    The Human Connectome Project's neuroimaging approach

    Get PDF
    Noninvasive human neuroimaging has yielded many discoveries about the brain. Numerous methodological advances have also occurred, though inertia has slowed their adoption. This paper presents an integrated approach to data acquisition, analysis and sharing that builds upon recent advances, particularly from the Human Connectome Project (HCP). The 'HCP-style' paradigm has seven core tenets: (i) collect multimodal imaging data from many subjects; (ii) acquire data at high spatial and temporal resolution; (iii) preprocess data to minimize distortions, blurring and temporal artifacts; (iv) represent data using the natural geometry of cortical and subcortical structures; (v) accurately align corresponding brain areas across subjects and studies; (vi) analyze data using neurobiologically accurate brain parcellations; and (vii) share published data via user-friendly databases. We illustrate the HCP-style paradigm using existing HCP data sets and provide guidance for future research. Widespread adoption of this paradigm should accelerate progress in understanding the brain in health and disease

    Using high angular resolution diffusion imaging data to discriminate cortical regions

    Get PDF
    Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology

    Left dorsolateral prefrontal cortex supports context-dependent prioritisation of off-task thought

    Get PDF
    When environments lack compelling goals, humans often let their minds wander to thoughts with greater personal relevance; however, we currently do not understand how this context-dependent prioritisation process operates. Dorsolateral prefrontal cortex (DLPFC) maintains goal representations in a context-dependent manner. Here, we show this region is involved in prioritising off-task thought in an analogous way. In a whole brain analysis we established that neural activity in DLPFC is high both when ‘on-task’ under demanding conditions and ‘off-task’ in a non-demanding task. Furthermore, individuals who increase off-task thought when external demands decrease, show lower correlation between neural signals linked to external tasks and lateral regions of the DMN within DLPFC, as well as less cortical grey matter in regions sensitive to these external task relevant signals. We conclude humans prioritise daydreaming when environmental demands decrease by aligning cognition with their personal goals using DLPFC

    A network linking scene perception and spatial memory systems in posterior cerebral cortex

    Get PDF
    The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works
    corecore