1,370 research outputs found

    Association between a longer duration of illness, age and lower frontal lobe grey matter volume in schizophrenia

    Get PDF
    The frontal lobe has an extended maturation period and may be vulnerable to the long-term effects of schizophrenia. We tested this hypothesis by studying the relationship between duration of illness (DoI), grey matter (GM) and cerebro-spinal fluid (CSF) volume across the whole brain. Sixty-four patients with schizophrenia and 25 healthy controls underwent structural MRI scanning and neuropsychological assessment. We performed regression analyses in patients to examine the relationship between DoI and GM and CSF volumes across the whole brain, and correlations in controls between age and GM or CSF volume of the regions where GM or CSF volumes were associated with DoI in patients. Correlations were also performed between GM volume in the regions associated with DoI and neuropsychological performance. A longer DoI was associated with lower GM volume in the left dorsomedial prefrontal cortex (PFC), right middle frontal cortex, left fusiform gyrus (FG) and left cerebellum (lobule III). Additionally, age was inversely associated with GM volume in the left dorsomedial PFC in patients, and in the left FG and CSF excess near the left cerebellum in healthy controls. Greater GM volume in the left dorsomedial PFC was associated with better working memory, attention and psychomotor speed in patients. Our findings suggest that the right middle frontal cortex is particularly vulnerable to the long-term effect of schizophrenia illness whereas the dorsomedial PFC, FG and cerebellum are affected by both a long DoI and aging. The effect of illness chronicity on GM volume in the left dorsomedial PFC may be extended to brain structure–neuropsychological function relationships

    White-matter abnormalities in brain during early abstinence from methamphetamine abuse

    Get PDF
    Previous studies revealed microstructural abnormalities in prefrontal white matter and corpus callosum of long-term abstinent chronic methamphetamine abusers. In view of the importance of the early abstinence period in treatment retention, we compared 23 methamphetamine-dependent subjects abstinent from methamphetamine for 7–13 days with 18 healthy comparison subjects. As certain metabolic changes in the brain first manifest after early abstinence from methamphetamine, it is also possible that microstructural white-matter abnormalities are not yet present during early abstinence. Using diffusion tensor imaging at 1.5 T, fractional anisotropy (FA) was measured in prefrontal white matter at four inferior–superior levels parallel to the anterior commissure–posterior commissure (AC–PC) plane. We also sampled FA in the corpus callosum at the midline and at eight bilateral, fiber-tract sites in other regions implicated in effects of methamphetamine. The methamphetamine group exhibited lower FA in right prefrontal white matter above the AC–PC plane (11.9% lower; p = 0.007), in midline genu corpus callosum (3.9%; p = 0.019), in left and right midcaudal superior corona radiata (11.0% in both hemispheres, p’s = 0.020 and 0.016, respectively), and in right perforant fibers (7.3%; p = 0.025). FA in left midcaudal superior corona radiata was correlated with depressive and generalized psychiatric symptoms within the methamphetamine group. The findings support the idea that methamphetamine abuse produces microstructural abnormalities in white matter underlying and interconnecting prefrontal cortices and hippocampal formation. These effects are already present during the first weeks of abstinence from methamphetamine and are linked to psychiatric symptoms assessed during this period

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al

    Measuring Information Processing Speed in Mild Cognitive Impairment: Clinical Versus Research Dichotomy

    Get PDF
    A substantial body of research evidence is indicative of disproportionately slowed information processing speed in a wide range of multi-trial, computer-based, neuroimaging- and electroencephalography-based reaction time (RT) tests in Alzheimer’s disease and mild cognitive impairment (MCI). However, in what is arguably a dichotomy between research evidence and clinical practice, RT associated with different brain functions is rarely assessed as part of their diagnosis. Indeed, often only the time taken to perform a single, specific task, commonly the Trail making test (TMT), is measured. In clinical practice therefore, there can be a failure to assess adequately the integrity of the rapid, serial information processing and response, necessary for efficient, appropriate, and safe interaction with the environment. We examined whether a typical research-based RT task could at least match the TMT in differentiating amnestic MCI (aMCI) from cognitively healthy aging at group level. As aMCI is a heterogeneous group, typically containing only a proportion of individuals for whom aMCI represents the early stages of dementia, we examined the ability of each test to provide intra-group performance variation. The results indicate that as well as significant slowing in performance of the operations involved in TMT part B (but not part A), individuals with aMCI also experience significant slowing in RT compared to controls. The results also suggest that research-typical RT tests may be superior to the TMT in differentiating between cognitively healthy aging and aMCI at group level and in revealing the performance variability one would expect from an etiologically heterogeneous disorder such as aMCI

    Allopregnanolone Promotes Regeneration and Reduces β-Amyloid Burden in a Preclinical Model of Alzheimer's Disease

    Get PDF
    Previously, we demonstrated that allopregnanolone (APα) promoted proliferation of rodent and human neural progenitor cells in vitro. Further, we demonstrated that APα promoted neurogenesis in the hippocampal subgranular zone (SGZ) and reversed learning and memory deficits in the male triple transgenic mouse model of Alzheimer's (3xTgAD). In the current study, we determined the efficacy of APα to promote the survival of newly generated neural cells while simultaneously reducing Alzheimer's disease (AD) pathology in the 3xTgAD male mouse model. Comparative analyses between three different APα treatment regimens indicated that APα administered 1/week for 6 months was maximally efficacious for simultaneous promotion of neurogenesis and survival of newly generated cells and reduction of AD pathology. We further investigated the efficacy of APα to impact Aβ burden. Treatment was initiated either prior to or post intraneuronal Aβ accumulation. Results indicated that APα administered 1/week for 6 months significantly increased survival of newly generated neurons and simultaneously reduced Aβ pathology with greatest efficacy in the pre-pathology treatment group. APα significantly reduced Aβ generation in hippocampus, cortex, and amygdala, which was paralleled by decreased expression of Aβ-binding-alcohol-dehydrogenase. In addition, APα significantly reduced microglia activation as indicated by reduced expression of OX42 while increasing CNPase, an oligodendrocyte myelin marker. Mechanistic analyses indicated that pre-pathology treatment with APα increased expression of liver-X-receptor, pregnane-X-receptor, and 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-R), three proteins that regulate cholesterol homeostasis and clearance from brain. Together these findings provide preclinical evidence for the optimal treatment regimen of APα to achieve efficacy as a disease modifying therapeutic to promote regeneration while simultaneously decreasing the pathology associated with Alzheimer's disease
    corecore