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Abstract  
 
Non-invasive human neuroimaging has yielded many exciting discoveries about the brain. 
Numerous methodological advances have also occurred, though inertia has slowed their 
adoption.  This paper presents an integrated approach to data acquisition, analysis, and sharing 
that builds upon recent advances, particularly from the Human Connectome Project (HCP).  The 
“HCP-style” paradigm has seven core tenets: (1) collect multimodal imaging data from many 
subjects; (2) acquire data at high spatial and temporal resolution; (3) preprocess data to 
minimize distortions, blurring, and temporal artifacts; (4) represent data using the natural 
geometry of cortical and subcortical structures; (5) accurately align corresponding brain areas 
across subjects and studies; (6) analyze data using neurobiologically accurate brain 
parcellations; and (7) share published data via user-friendly databases.  We illustrate the HCP-
style paradigm using existing HCP datasets and provide guidance for future research.  
Widespread adoption of this paradigm should accelerate progress in understanding the brain in 
health and disease. 
 
Introduction 
 
The Human Connectome Project (HCP) began in 2010 with ~$40M awarded by the National 
Institutes of Health (NIH) to two consortia to develop improved neuroimaging methods and to 
acquire a dataset of unprecedented size and quality for mapping the normal human macro-scale 
connectome1,2 that is, the long-distance connections between all of the brain’s areas. Better 
maps of the brain’s areas and their connections will deepen our understanding of healthy brain 
function and may improve our ability to understand and treat neurological and psychiatric 
disorders. The “WU-Minn-Ox” HCP consortium, centered at Washington University, University of 
Minnesota, and Oxford University, spent its first two years developing the state of the art 
methods discussed here, and then proceeded to acquire, analyze, and share high quality 
multimodal neuroimaging, behavioral, and genotype data from 1200 healthy young adult twins 
and non-twin siblings3,4. The HCP focused primarily on MRI-based imaging modalities to 
measure brain architecture, function, connectivity, and the regular, topographic, organization of 
some brain areas; however, magnetoencephalography (MEG) data was also acquired in some 
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subjects (see Box 2).  As the HCP’s core activities draw to a close in 2016, its contributions 
include (i) a set of broadly useful MRI acquisition protocols, consisting of thoroughly tested and 
optimized pulse sequences and image reconstruction algorithms; (ii) an unprecedented 
collection of exceptionally high quality, freely shared neuroimaging data; (iii) numerous publicly 
available neuroimaging software and informatics tools; (iv) a growing number of intriguing 
discoveries emerging from analyses of HCP data; (v) the emergence of an “HCP-style” 
paradigm for neuroimaging data acquisition, analysis, and sharing; and (vi) a growing number of 
HCP-style projects that will study different age ranges and brain disorders.  
 
This article is both a position paper and a primer, promoting awareness and adoption of the 
integrated HCP-style paradigm along with guidance on its use.  We provide an accessible 
conceptual overview of seven core tenets of the paradigm and summarize several recent 
discoveries made possible through its application. Additional technical information and 
discussion is provided in the cited publications and in 18 sections of the Supplementary 
Information (SI) that expand on specific topics raised in the main text. Investigators interested in 
practical aspects of implementing the HCP paradigm in their own lab can reference the MRI 
protocols, HCP software, and HCP Course materials listed below. 
  
The seven tenets of the HCP-style paradigm span the domains of acquisition, analysis, and 
sharing of MRI-based data: (1) acquiring large amounts of high quality, multi-modal data on as 
many subjects as feasible to measure architectural, functional, connectional, and topographical 
information4 (2) acquiring this MRI data with high spatial, temporal, and angular resolution for 
structural, functional, and diffusion MRI using cutting-edge accelerated acquisition protocols5; 
(3) minimizing blurring introduced by preprocessing and removing distortions, noise, and 
temporal artifacts as selectively and completely as possible6,7; (4) representing cortical data 
(surface vertices) and subcortical data (volume voxels) in a common geometrical framework 
(“CIFTI grayordinates”) that is optimal for each6; (5) accurately aligning corresponding brain 
areas across subjects and studies using “areal features” related to connectivity and 
architecture8,9; (6) using structurally and functionally relevant brain parcellations (preferably 
based on multiple modalities) to provide a strong neuroanatomical framework for condensing 
complex neuroimaging data and enhancing statistical sensitivity and power without blurring 
across areal boundaries8; and (7) routine sharing of extensively analyzed results such as 
statistical maps10 (plus raw and preprocessed data when feasible11) together with the code used 
for the analysis, so that other neuroscientists can make precise comparisons across studies, 
along with replicating and extending findings.  
 
The HCP-style paradigm builds on recent advances in data acquisition, analysis, and sharing 
from many neuroimaging labs worldwide, both within and outside the HCP consortia. It 
benefitted greatly from the NIH’s emphasis on methodological development prior to high-
throughput data acquisition. The HCP-style paradigm differs from common practices in the 
human neuroimaging community that emerged during the early years of PET and fMRI (the 
‘traditional paradigm’), which often involve (i) voxel-based (‘volumetric’) analysis of data 
acquired at relatively coarse spatial and temporal resolutions on small groups of subjects; (ii) 
extensive unconstrained spatial smoothing that attempts to compensate for imperfect cross-
subject alignment, improve signal-to-noise ratio (SNR), and satisfy oversimplified statistical 
assumptions12; (iii) not using parcellations at all or using parcellations derived from Brodmann’s 
2D schematic drawing; and (iv) reporting summary results using 3D volumetric coordinates 
while keeping the extensively analyzed data private.  Relative to the new paradigm, the 
traditional paradigm has limitations in spatial fidelity, neuroanatomical fundamentals, and the 
robustness of cross-study comparisons, along lines also noted by Turner13,14.   
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Though most neuroimaging studies still use the traditional paradigm, important exceptions 
dating as far back as the 1990’s include numerous “retinotopy” studies that use functional MRI 
(fMRI) data to map the arrangement of visual areas on cortical surface meshes of individual 
subjects15,16. Thanks in part to this emphasis on surface-based analyses, the visual system is 
one of the better understood functional systems in the human brain. We anticipate accelerated 
progress in understanding other brain regions as the new paradigm is applied to them more 
routinely.   
 
A solid conceptual understanding of MRI acquisition, preprocessing, and analysis (tenets 1-5) is 
important for applying the HCP-style paradigm to one’s own studies, and for understanding the 
methodological choices made by the HCP and its successors (see below).  Many of these 
choices were driven by fundamental properties of human brain anatomy, MR physics, and 
human physiology.   
 
Tenets 1 and 2: Multi-modal Data Acquisition Informed by Brain Anatomy and 
Physiology. 
 
Comprehensive non-invasive brain mapping of many subjects using multi-modal MRI.  The HCP 
acquired ~4 hours of structural, functional, and diffusion images (along with auxiliary ‘field map’ 
images to help with image preprocessing).  The structural images were T1-weighted (T1w) and 
T2-weighted (T2w) images (see Supplementary Topic #1 for a discussion of the relationship 
between these terms and MRI contrast).  These images allow non-invasive measurement of 
architectural properties like myelin content within the cerebral cortex and cortical thickness that 
match well with corresponding invasive measures17-19, see also Supplementary Topic #1. The 
structural images also generate geometrical models of brain anatomy (cortical surface meshes 
and subcortical segmentations17,20-27) that are critical for all other analyses. The functional 
images included task-based fMRI, where the subjects carried out behavioral tasks while in the 
scanner28, and resting-state scans, where subjects fixated on a crosshair.  These functional 
images enable measurement of functional activation within brain areas, and ‘functional 
connectivity’ based on correlations of the fMRI signal between brain areas in the absence of a 
task or controlled external stimuli.  They can also map the internal topographic organization 
within brain areas, such as the ordered representation of visual space within visual areas using 
task driven15,16,29 or resting-state-based methods (visuotopic organization)8.  The similarity of 
these detailed maps across species30 and in comparison with invasive studies in non-human 
primates,31,32 confirms that fMRI can accurately capture properties of brain organization.  
Diffusion MRI uses directionally dependent diffusion of water within white matter to encode 
average axonal fiber orientations, which can be connected by streamlining tractography 
algorithms to estimate structural brain connectivity, yielding results that are modestly correlated 
with invasively measured structural connectivity33,34. Diffusion MRI also allows estimates of 
microscopic structural properties of brain tissue, such as the integrity and orderliness of axons 
(e.g.35-37. Thus, the HCP MRI data enables brain architecture, function, connectivity, and 
topography to be estimated non-invasively.  The large number of subjects (~1100) imaged by 
the HCP enables statistically precise estimation of these measures in the healthy young adult 
population and investigation of the nature and extent of their individual variability, while the 
focus on twins (and their non-twin siblings) enables assessment of their heritability.  
 
How brain anatomy drives MRI spatial resolution. The cerebral cortex, the seat of human 
cognition, is a folded sheet, 1.6 - 4mm thick (mean ~2.6 mm), with a surface area of ~1,000 
cm2/hemisphere18,38. High quality structural images (both T1w and T2w) are vital for generating 
accurate geometrical models upon which all other analyses are based (surface meshes for the 
cerebral cortex and grey matter ROIs for the subcortical structures6. For the main HCP, we 
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acquired these images at an isotropic spatial resolution of 0.7mm (voxel cubes 0.7mm on each 
side), enabling accurate individual subject maps of cortical myelin content and thickness 
together with precise models of the inner (white matter) and outer (pial) surfaces.  In general, 
we recommend acquiring T1w and T2w images at 0.8mm isotropic or better (half the minimum 
thickness of the cortex), in contrast to the single 1mm T1w image traditionally acquired.  Such 
high-resolution images benefit from tightly fitting multi-channel MR receive head coils, such as 
the Siemens 32-channel head coil used by the HCP. 
 
For fMRI, it is important to acquire images of sufficient spatial resolution to distinguish between 
cortical gray matter, cerebrospinal fluid (CSF), and white matter, and between opposite banks of 
cortical folds. The HCP acquired high-resolution fMRI data at 2 mm isotropic (with high 
resolution fMRI being defined as having voxels smaller than the mean cortical thickness of 2.6 
mm, see Supplementary Fig. 1) on its customized 3-tesla (3T) scanner (and at 1.6 mm isotropic 
at 7T).  High-resolution fMRI enables more precise localization of functional signals 6 in contrast 
to resolutions as low as 4 mm that have been traditionally used in fMRI.   
 
Diffusion MRI (dMRI) aims to address a fundamentally resolution-starved problem: mapping 
connections through brain white matter whose individual axons are mostly <1 micron diameter 39 
with MRI voxels that exceed 1 mm isotropic, contain hundreds of thousands of axons 40, and 
typically include multiple populations of fibers crossing in various directions. Both of the HCP 
consortia used customized MRI scanners and customized MRI pulse sequences to acquire in 
vivo human diffusion data of unprecedented resolution5,41-46. The 3T WU-Minn HCP scanner 
uses very strong magnetic field gradients (100 mT/m), approximately double that which 
commercial scanners could achieve when the project began in 2010.  Along with new and 
optimized dMRI pulse sequences, this enabled 1.25mm isotropic resolution in human dMRI in 
vivo (see Supplementary Topic #2 and Supplementary Figs. 2 and 3 for more details) and 
1.05mm isotropic at 7T45,47, in contrast to traditional dMRI with 2-2.5 mm resolution. The 
recently introduced Siemens Prisma MRI scanner (80 mT/m) developed in part because of the 
HCP enables the community to acquire similar dMRI data. 
 
Faster, longer imaging for cleaner fMRI data and more robust white matter fiber orientation 
estimates.  Most MRI-based functional imaging relies on the Blood Oxygen Level Dependent 
(BOLD) contrast mechanism in which increased neural activity indirectly alters the regional 
deoxygenated hemoglobin content over a time course (‘hemodynamic response function’, or 
HRF) of many seconds48.  Accordingly, one might think that it is sufficient to acquire fMRI 
images at intervals modestly faster than the HRF (2-3 s Repetition Time, TR, has been typical 
for whole brain imaging).  However, fMRI images are corrupted by many sources of time-
dependent (temporal) artifacts, including subject movement, physiology, and scanner instability.  
Many artifacts occur more rapidly than the typical fMRI volume TR and thus are aliased into the 
signal.  High temporal resolution fMRI data (i.e., TR < 1 s) facilitates more selective and 
effective artifact removal7, and improves statistical efficiency, particularly for multi-variate 
statistics49. Recent data also suggest that there may be faster components to the BOLD 
response50,51, which would be better captured with faster scans. The HCP acquired fMRI data at 
TR = 0.72 s for 3T and 1 s for 7T using MRI pulse sequences that acquire many brain slices at 
a time (‘multi-band’ - also known as  ‘simultaneous multi slice’ - sequences, see Supplementary 
Topic #35,43,52-54 and Supplementary Fig. 4).  For diffusion imaging, using these sequences to 
reduce the TR allows for more images to be acquired with diffusion weightings at different 
strengths and along a larger number of unique spatial directions in the same amount of time.  
The resulting higher angular resolution and effective SNR enables multiple fiber populations to 
be more robustly identified in each imaging voxel, helping to resolve crossing fiber pathways 
and improve tractography5,44. 
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The HCP used 1 hour of scan time for each of task fMRI, resting state fMRI, and diffusion 
imaging.  This enabled seven fMRI tasks to be acquired covering multiple cognitive domains 
and involving most of the brain28 http://protocols.humanconnectome.org/HCP/3T/task-fMRI-
protocol-details.html, along with four 15-min resting state fMRI runs (helping to provide more 
stable connectivity estimates55), and 270 different diffusion measures (90 unique diffusion 
directions for each of three different diffusion weighting strengths (i.e. “shells”), enabling better 
fiber orientation and tissue microstructure modeling at high resolution56,57.  See Supplementary 
Topic #4 for particulars on various “HCP-Short” protocols optimized for subjects who are less 
tolerant of long scans than healthy young adults.   
 
Tenets 3 and 4: Optimizing the Precision of Data Analysis 
 
Aligning all MRI modalities within the subject’s physical space.  A key early task of 
preprocessing is to align all MRI modalities so that every image volume is in the subject’s 
undistorted physical space.  Head movements occur in the scanner, both between acquisition of 
each image and during acquisition.  Because head movement during T1w and T2w images 
causes uncorrectable blurring, the HCP acquired at least two pairs of T1w and T2w images, and 
used all scans that were rated good or excellent in overall quality (11; see Supplementary Topic 
#5 for further discussion of this issue and potential solutions).  Spatial effects of movement 
during fMRI or dMRI acquisitions can be corrected after the fact using image registration to 
realign the images; however, movement also induces temporal variations of image intensities 
that must be corrected through other means described below.  Movement between images of 
different modalities is corrected with advanced registration algorithms that use knowledge of 
brain tissue boundaries and the expected image intensity gradients across those boundaries to 
align images58. 
 
Ideally, image registration within each subject would entail simple translations or rotations, but 
MRI images have many forms of spatial distortion that must be unwarped before an image 
faithfully represents the individual brain’s real physical dimensions and thus can be precisely 
aligned.  These distortions all derive from imperfections in the scanner’s encoding of physical 
space using perturbations (linear gradients) of the main magnetic field.  All MRI images are 
slightly distorted by small nonlinearities in the space-encoding gradients that are correctible 
using information measured and specified by the manufacturer (gradient distortion, see 
Supplementary Topic #6).  In addition, placement of the subject’s head in the scanner induces 
idiosyncratic variations in the magnetic field (field inhomogeneities), particularly near the air-
filled spaces in the head (sinuses and ear canals), which can be measured using the auxiliary 
‘field map’ scan mentioned above.  Correcting these distortions with a field map is critical for 
accurately aligning data across modalities within each subject, though traditionally this scan is 
often omitted, leading to poor alignment in some brain regions.  Scanner vendors provide a 
standard field map scan (based on gradient echoes), but the HCP developed an alternative 
‘spin echo EPI field map’, that is faster, at least as accurate, and also enables correction of fMRI 
image intensity biases (see Supplementary Topic #7).  These field map scans should exactly 
match the geometry and distortion properties of the functional imaging scans.  Diffusion imaging 
scans have additional ‘eddy current’ distortions caused by switching on and off the strong 
magnetic field gradients used to generate diffusion weighting.  The HCP developed a new 
algorithm for correcting eddy current distortions that outperforms previous methods and allows 
quality control and outlier detection (see Supplementary Topic #8;59-61).  With field maps, 
advanced distortion correction methods, and anatomically informed registration algorithms, the 
HCP’s spatial preprocessing pipelines6 precisely align the T1w, T2w, fMRI, and diffusion data to 
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the subject’s physical space while minimizing interpolation-induced blurring by combining all 
spatial transformations in a single spline interpolation.    
 
Cleaning time-dependent artifacts from MRI timeseries data.  In functional imaging, many 
processes cause time-dependent intensity fluctuations other than the BOLD-related fluctuations 
of interest.  This structured temporal noise is especially problematic for resting-state functional 
connectivity because it uses correlations of noisy signals in different parts of the brain, rather 
than correlation of a predefined noiseless task design with noisy data. Temporal noise can 
either increase or reduce functional connectivity artifactually and lead to incorrect conclusions62-

64.  Major sources of structured temporal noise include subject movement, subject physiology, 
and the physics of MRI.  It is useful to consider the fMRI timeseries as containing fluctuations 
arising from 1) the BOLD signals of interest, 2) structured temporal noise, 3) and unstructured 
random ‘Gaussian’ temporal noise11.  Temporal cleanup aims to remove temporal noise as 
selectively as possible while minimally impacting the BOLD signals of interest.  The HCP 
devised a method based on Independent Components Analysis (ICA,65, which splits the fMRI 
timeseries into structured components and unstructured noise, representing all of the timeseries 
fluctuations.  The structured components are then categorized by a machine learning classifier 
(FIX) into signal and noise7, and the noise components are removed by regressing them out of 
the data.  For HCP data, the ICA+FIX approach removes spatially specific (i.e. affecting only 
part of the brain in a particular way) structured noise components and retains spatially specific 
BOLD signal components (i.e. resting state networks, RSNs) with better than 99% accuracy7.  In 
contrast, traditional approaches that include bandpass filtering, WM and CSF regression, and 
censoring of high-motion frames63,64) are not as selectively at targeting structured noise while 
preserving BOLD signal.  However, a controversy remains about "global" fluctuations in fMRI 
(see Box 1 and also Supplementary Topic #9 and Supplementary Figs. 5 and 6), as the spatial 
ICA+FIX approach is not designed to separate these ‘global’ fluctuations in the average fMRI 
signal into signal and noise.  For dMRI, subject motion and physiology can cause signal loss. 
Such ‘outliers’ can be detected using a new approach that builds a model of the diffusion signal 
from all of the data, allowing artifactual measurements to be identified and replaced with 
estimates of what the signal should have been (see Supplementary Topic #8, 59-61). 
 

Box 1: Global fMRI Temporal Fluctuations. A hotly debated topic is how best to handle 
‘global’ signals and artifacts present in fMRI data62,63,105-107.  The core phenomenon 
involves slow and spatially widespread fluctuations in the fMRI timeseries.  The average 
timeseries across the brain includes both neural signal (e.g. the average of all the resting 
state networks) and structured noise (e.g. physiological noise), and the debate centers 
on whether the average timeseries should be regressed out of the data to remove the 
effects of global noise62 or whether it should be preserved to avoid distorting neural 
signals by removing their average.  Additive global noise will by definition artifactually 
increase ‘full’ correlations across the brain (especially problematic if it differs across 
groups), but removal of a global neural signal will artifactually decrease correlations 
across the brain and, more problematically, distort the pattern of correlations for 
particularly large/strong networks62,108,109.	  
	  
What is needed to get past the current impasse is a method that selectively separates 
global signal and global noise. Though no such method is yet available, we offer several 
observations about global fMRI fluctuations. 1) In HCP data, the global signal (after 
ICA+FIX cleanup) is primarily a gray matter signal, with a near zero amplitude in white 
matter voxels and low-level anti-correlation with CSF (Supplementary Fig. 5).  2) Within 
grey matter, the mean grey time course has much higher amplitude in sensory regions 
(e.g. visual, auditory, vestibular, and somatosensory cortex, plus the lateral geniculate 
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nucleus and other thalamic nuclei) and is lower in the cerebellum and many neocortical 
cognitive regions (Supplementary Fig. 6).  Thus, the global signal is not uniform across 
the brain, or even across grey matter, and these observations constrain the possible 
sources of the global fluctuations: 
 
(i) Physiological effects. Substantial fMRI timeseries variance is attributable to 

physiological variables, including rate and depth of breathing, heart rate, and end 
tidal pCO2110-112).  Indeed, any physiological process that affects global perfusion 
pressure of the brain (i.e. the above three, or even yawning) may transiently alter 
the amount of deoxyhemoglobin in the brain and contribute to global, 
physiologically artifactual fluctuations of the BOLD signal.  Different brain areas 
and tissue types may be differentially sensitive to such changes in perfusion 
pressure because of differing metabolic rates, which may explain regional 
differences in global signal amplitude.   

(ii) Head movements (direct, biophysical). Transient head movements are 
sometimes followed by global fluctuations in the fMRI signal, leading to 
suggestions that head movements could directly cause these fluctuations62,64,106.  
However, head movements are unlikely to cause global fluctuations directly, 
given the lack of a plausible biophysical mechanism for how head movement 
might induce tissue-specific and brain-area-specific effects on the fMRI 
timeseries, let alone globally uniform changes in signal intensity short of 
complete head coil exit and reentry (See Supplementary Topic #9). 

(iii) Head movements (indirect, neural).  Head movements may induce neural 
responses in somatosensory, vestibular, and/or visual systems that may in turn 
modulate wider brain activity in a pattern very consistent with that mentioned 
above.   

(iv) Widespread/High amplitude RSNs, average of the RSNs.  As discussed above, a 
portion of the global fluctuations will represent the average of the RSNs with 
particular weighting to more widespread or stronger networks.   

 
It will be important to separate global physiological effects from spatially widespread 
neural effects (using either extrinsic physiological monitoring or intrinsic fMRI-data-driven 
means yet to be developed).  Short of a complete solution to the problem of global 
fluctuations, we note that some approaches to analysis (such as the use of partial 
correlation when estimating functional connectivity, and multi-variate measures in 
general) are much more immune to the effects of global fluctuations than others (e.g., 
full correlation measures and uni-variate measures in general)113.   
	  

 
The traditional approach to reducing unstructured Gaussian noise involves spatial and temporal 
smoothing, which unfortunately affect both signal and noise unselectively.  A common problem 
in traditional neuroimaging is that smoothing mixes the grey matter functional signals of a given 
brain area with signals from white matter, CSF, and nearby brain areas, markedly reducing the 
spatial fidelity of neuroimaging data.  Parcellation (tenet 6) enables averaging of data without 
mixing signal across different tissue types or between different brain areas in so far as the 
parcellation is neurobiologically accurate, and acts as a neuroanatomically informed method of 
nonlinear smoothing.  Another option is to selectively smooth unstructured noise more than 
structured BOLD signal (see Supplementary Topic #10).  This enables reduction of certain 
artifacts (see Supplementary Fig. 7) and enhancement of SNR without concomitant spatial 
blurring and without invoking a brain parcellation.  
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Preserving precision from voxels to CIFTI 
“grayordinates.” It is vital that the 
preprocessing and analysis techniques used 
on high resolution HCP-style data maintain 
this hard-won spatial resolution.  Besides 
removing distortions and accurately aligning 
data across modalities within each subject, 
the data must be put into an analysis 
framework that enables accurate cross-
subject and cross-study comparisons (tenet 5 
below). The traditional neuroimaging 
paradigm represents spatial data in a regular 
3D array of voxels (an image volume) that 
reflects the output of the MRI image 
reconstruction process.  Because the cerebral 
cortex has a sheet-like folded geometry, it is 
advantageous to visualize and analyze 
cortical data on surface mesh vertices, 
instead of volume voxels15,25,26,38.  However, 
subcortical grey matter structures are mostly 
globular in shape and remain best 
represented using volume voxels.  To 
represent the inherently dual geometry of the 
brain, the HCP developed the CIFTI file 
format6, which integrates surface vertices and 
subcortical voxels into a single file and 
represents each major brain gray matter 
structure using the appropriate geometry (see 
Figure 1).  CIFTI gray matter vertices and 
voxels are called ‘grayordinates.’  Analyses 
focusing only on grayordinates (e.g., fMRI) 
dramatically reduce file sizes and 
computational burdens (see Figure 1 legend). 
For dMRI, surface representations allow more 
accurate anatomical constraints in 
tractography (e.g., the white surface can be 
used as the destination for tractography). The 
final common outputs of the HCP 
preprocessing and analysis 
pipelines are datasets in the CIFTI 
standard space6.  CIFTI is natively 
supported by Connectome 
Workbench, and other tools are 
currently implementing CIFTI 
compatibility (e.g., FSL, FreeSurfer, 
FieldTrip, nibabel).  In particular, 
FSL’s PALM software enables 
permutation-based statistical 
inference on CIFTI datasets 
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PA
LM 66).  The CIFTI grayordinates 

Figure 1. Combined representation of cortical surface vertices and 
subcortical voxels in the CIFTI grayordinates standard space. Left and 
right cerebral cortices contribute about 30k surface vertices each (fewer 
than the 32k vertex standard meshes for each hemisphere, because 
the non-cortical medial wall is not included). Additionally, 19 subcortical 
grey matter structures combine to contribute about 30k volume voxels. 
In total, there are 91,282 grayordinates corresponding to all of the grey 
matter sampled at a 2 mm average vertex spacing on the surface and 
as 2 mm voxels subcortically. The HCP’s minimal preprocessing 
pipelines ensure that each subject has 91,282 aligned grayordinates, 
thereby facilitating cross-subject comparisons of data within this 
coordinate system. This entails more than a two-fold reduction in file 
size relative to the >200,000 voxels needed for an equivalent 2 mm 
isotropic volume representation.  For the 1.6mm 7T HCP data, we have 
developed a 1.6mm standard grayordinates space with 170,494 
grayordinates using “59k” surface meshes.  Reproduced with 
permission from Reference 6.	  
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analysis framework allows each brain structure to be registered using the approach best suited 
to it (see Tenet 5).   
 
Tenet 5: Accurately Aligning Brain Areas Across Subjects and Studies.  
 
Cross-subject comparisons. Analyses that combine neuroimaging data obtained from different 
individuals benefit greatly from accurately aligning corresponding brain areas, so that like is 
compared with like14, Alignment of subcortical and cortical structures is best achieved through 
differing means.  Subcortical structures are less variable in size, shape, and position across 
subjects, and reasonable alignment is achieved by nonlinear 3D registration to a standard 
template, as in the traditional paradigm.  The HCP currently uses FSL’s FNIRT for nonlinear 
registration of T1w images to MNI space, but registrations that also incorporate dMRI fiber 
orientations in the white matter may improve alignment of subcortical white matter fiber tracts 
(See Supplementary Topic #1167,68). 
 
For human cerebral cortex, the complexity and variability of folding patterns and of areas 
relative to folds38,69-71 poses a profound challenge that is an ill-posed problem for nonlinear 3D 
registration.  Though alternative approaches such as hyperalignment (where alignment is not 
spatially constrained) are useful in some contexts, many neuroscientific questions are best 
addressed by aligning subjects to a common space. Registering cortical surfaces rather than 
brain volumes enables better alignment because accurate cortical segmentation of each subject 
reduces the dimensionality of the registration problem from 3D to 2D—alignment need only 
occur tangential to the cortical sheet as opposed to a 3D alignment of the folded sheet 
itself26,38,72-76. 
  
Though surface-based registration of the cerebral cortex to an atlas is not a part of the 
traditional paradigm, it has been adopted by a growing number of investigators.  Most use 
surface registration based on cortical folding patterns26,38,72-76, which achieves ‘geographic 
correspondence’ in regions where folding patterns are consistent across individuals and 
‘functional correspondence’ in regions where areal boundaries are consistently correlated with 
folding.  Because cortical folding patterns are highly variable in many regions of cortex and their 
relationships to cortical areas are similarly variable, folding patterns alone are not enough to 
achieve alignment of (functional) cortical areas across most of cerebral cortex.  Registration 
needs instead to be driven by features more closely tied to cortical areas, such as architecture, 
function, connectivity, and topography77.  Such areal-feature-based cortical surface registration 
can dramatically improve the sharpness of group average maps and enhance group statistics, 
as it largely compensates for differences across subjects in cortical areal size, shape, and 
position.  Indeed, alignment based on T1w/T2w myelin maps, resting state network maps, and 
visuotopic connectivity maps yields sharper task fMRI contrast maps with higher statistics, even 
though the task fMRI data were not used in the registration (Figure 2)8,9.  Areal-feature-based 
aligned data was recently released by the HCP (dubbed ‘MSMAll’ because it uses the Multi-
modal Surface Matching algorithm,9 and all of the useful modalities listed above).  We believe 
that many studies will benefit from using areal-feature-based surface registration as a starting 
point, even if they choose to make final comparisons across subjects using other means (e.g. 
hyperalignment78, or individual subject parcellation (see below and ref.8).   
 
Cross-study comparisons.  Traditionally, cross-study comparisons based on 3D stereotaxic 
coordinates were assumed to align if everyone used a common standard volume space (e.g., 
MNI).  These 3D coordinates were typically derived from thresholded statistical maps of the 
‘significant’ activations (or connectivity seed locations).  Though such standard space 
coordinates allow for gross comparisons across studies at the gyral level (e.g., ref.79, questions 
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of whether a particular cortical area was activated in particular task contrast typically reveal 
clouds of points whose distribution may be suggestive, but often inconclusive (e.g., ref.19).  
Stereotaxic coordinates have high spatial uncertainty (relatively small changes in the 
thresholded statistical maps used to produce them can have large effects on the resulting  
coordinate locations, see Supplementary Topic #12 and Supplementary Fig. 8), and they do not 
contain information about the spatial extent or boundaries of activation.  Conclusive cross-study 
comparisons require assessment of the overlap of activated regions and whether their 
boundaries align or not.  Cross-study comparisons also rely on the absence of any “drift” in 
alignment between the studies (see Supplementary Topic #13 and Supplementary Fig. 9). 
When drift is eliminated and boundaries are compared, direct and conclusive assessments of 
cross-study agreement are possible (see Supplementary Fig. 10, also Figure 6). 
 

 
 
 
 
 

Figure 2. Improved intersubject registration using information based on areal features in addition to cortical 
folding.  The top row shows group task-fMRI z-stat maps (“Story vs Baseline” contrast from the language task 
on the left and the two-back vs zero-back contrast in the working memory task on the right) from 120 Q1 and 
Q2 HCP subjects after intersubject registration using the Multimodal Surface Matching (MSM) method 
constrained only by folding (FreeSurfer’s ‘sulc’ maps).  Bottom row shows sharper group task-fMRI maps and 
higher z-statistics when using resting-state networks (RSN) along with myelin maps to constrain the 
registration. For the data in this figure and figure 6, subject recruitment procedures and informed consent 
forms, including consent to share de-identified data, were approved by the Washington University institutional 
review board.	  Data at http://balsa.wustl.edu/97V4. 
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Tenet 6: Neuroanatomically Accurate Maps of Brain Areas.  
 
Accurately subdividing the brain into its constituent parts (areas or parcels) has been a holy grail 
for brain cartographers and other neuroanatomists for more than a century80-82. The goal is to 
reliably identify parcels that are distinct from one another in architecture, function, connectivity, 
and/or topographic organization and are consistently identifiable in most or all individuals.  For 
neuroimaging, parcellation serves to: (i) clarify ‘where we are’ in the brain when describing 
results14; (ii) facilitate comparisons across individuals and studies; and (iii) reduce the 
dimensionality of complex and noisy datasets while respecting neuroanatomically distinct 
boundaries. Parcellation can dramatically improve statistical sensitivity and power by averaging 
across neuroanatomically similar units of the brain, enhancing SNR and reducing the vast 
number of statistical comparisons often carried out in neuroimaging (circumventing problematic 
corrections for multiple comparisons that have affected a substantial fraction of the 
neuroimaging literature 12).  As noted above, parcellation is an attractive alternative to traditional 
spatial smoothing for analyses that are interested in effects at the areal level (in practice, most 
studies that provide a standard space coordinate table).   
 
A cortical areal parcellation should ideally have four key qualities: (i) It should be based on 
many (hundreds of) well aligned subjects so that it represents the typical areal arrangement in 
the studied population (e.g., healthy young adults for the HCP).  (ii) It should reflect 
complementary and converging evidence from multiple modalities across the whole cerebral 
neocortex for completeness and for higher confidence in boundaries.  Most parcellation efforts 
to date have relied instead on information from a single modality, such as architecture70,83, 
retinotopy16,29, or resting-state fMRI84-86, and often do not cover the whole hemisphere.  (iii) It 
should reflect existing terminology for areas previously reported in the neuroanatomical 
literature and a rational terminology for newly defined areas. (iv) It should be possible to 
automatically replicate the parcellation in individual subjects’ datasets based on multi-modal 
areal fingerprints – even in subjects with atypical areal arrangements or those from future 
studies.  The recently reported “HCP_MMP1.0” (HCP MultiModal Parcellation, version 1.0) 
meets these criteria8, but we expect this will not be the final word on cortical parcellation.  Also 
subcortical structures and the cerebellum need analogous multi-modal parcellations. 
 
The HCP_MMP1.0 parcellation (Figure 3) contains 180 distinct areas per hemisphere, 
symmetrically arranged across the two hemispheres.  83 areas corresponded reasonably well 
with areas defined in one or more prior studies and were assigned the same names, while 97 
were assigned new names.  The group average parcellation was used to train a machine-
learning classifier (a multi-layer perceptron87) to enable a fully automated process for identifying 
areas in individual subjects based on each area’s multi-modal fingerprint, even in individuals 
having atypical topological arrangements of areas (Supplementary Fig. 11). 
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More generally, the classifier can reliably detect cortical areas in individual subjects without 
using the HCP’s task fMRI data (using only myelin maps, thickness maps, resting state network 
maps, and resting state visuotopic maps), enabling generalization of the approach to many non-
HCP neuroimaging datasets.  Individual investigators wishing to apply the HCP Pipelines, areal-
feature-based registration, and trained areal classifier to their own individual subjects, need only 
acquire T1w, T2w, field map, and fMRI data as described above, as even non-resting state fMRI 
data include similar patterns of connectivity88. The population-based parcellation can also be 
applied directly to registered individual subjects, though it will not be accurate where individual 
subjects deviate from the typical layout of areas.  The HCP’s multimodal ‘hard’ parcellation v1.0 
provides a neuroanatomical foundation for future neuroimaging analyses, though other 
‘weighted’ approaches provide valuable complementary information as well (see Supplementary 
Topic #14).  It’s worth noting that FreeSurfer uses an algorithm to automatically label gyri and 
sulci in individual subjects based on manually generated training labels that is similar in spirit to 
our areal classifier89. 

Figure 3. The HCP_MMP1.0 (HCP Multi-Modal Parcellation, v 1.0). Each panel shows 180 cortical 
areas delineated and identified in the left or right hemisphere, displayed on an inflated or flattened 
cortical surface.  Black outlines indicate areal borders.  Colors indicate to what extent the areas are 
associated in the resting state to auditory (red), somatosensory (green), visual (blue), task positive 
(towards white), or task negative (towards black) systems.  The legend on the bottom right illustrates 
the 3D color space used in the figure. Reprinted from ref8.  Data at http://balsa.wustl.edu/WN56. 
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Tenet 7: Routine Data Sharing and Advanced Informatics for Data Management  
 
Data sharing for individual laboratories. Data may be publicly shared at many levels, including 
extensively processed, preprocessed, and unprocessed stages together with the code used for 
analysis. Data sharing is increasingly mandated by journals and funding agencies.  Although the 
HCP has shared its data using an advanced informatics infrastructure described below, most 
individual investigators only publish their results in journal articles, as the additional time and 
informatics skills required for more expansive data sharing have made it impractical. Generating 
and editing manuscript figures is typically a tedious process involving multiple software 
applications that neither work efficiently together nor aid in preparing data for post-publication 
sharing.  Routine sharing of extensively processed data would be expedited by a streamlined 
process for generating publication-ready figures that is integrated with a service for easy post-
publication sharing of the associated data.   
 
An integrated approach to data visualization, figure generation, and data sharing is now 
available.  Connectome Workbench (a freely available general-purpose neuroimaging 
visualization platform) provides a flexible interface for displaying rich multi-modal neuroimaging 
datasets.  “Workbench” enables visualization of various data types overlaid on surfaces or 
volumes (NIFTI, GIFTI, or CIFTI files). Multi-panel montage figures can be generated by 
combining web browser-like tabs that can also be annotated (e.g., text, symbols, and imported 
image panels) directly in Workbench.  For example, Figure 4 is one of 42 published figures in 
one study 8 exported from Workbench without further editing. Importantly, Workbench allows 
such complex displays to be saved as “scenes” that can be quickly re-opened, edited, re-saved, 
and exported as publication-ready images.  Data from such figures can be shared by uploading 
the scene file to the BALSA database (http://balsa.wustl.edu;10 directly from Workbench, 
together with basic information about the publication.  Scene-specific URLs enable one-click 
linking from a published figure to the corresponding page in BALSA (see Figure legends).  
Adoption of similar strategies by other neuroimaging software and databases would accelerate 
sharing of extensively analyzed data and facilitate more accurate and diverse comparisons 
across studies.   
 



	   14	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Large-Scale Data Sharing and an Advanced Informatics Infrastructure. Well designed data 
management tools and processes are vital for the successful collection and analysis of high 
quality HCP-Style data on a large scale.  ConnectomeDB, the primary database for HCP data, 
was designed for user-friendly sharing of unprocessed and preprocessed data from a large 
number of individual subjects, which can be selectively downloaded using a variety of flexible 
criteria https://db.humanconnectome.org11,90. ConnectomeDB is based on the XNAT informatics 
platform (http://www.xnat.org91, which manages imaging data through a structured workflow 
from acquisition through quality control and automated processing90.  It also provides data entry 
and import tools for task and biometric data collected during image acquisition as well as 
behavioral and other non-imaging data.  ConnectomeDB also serves as the data management 
platform for the Lifespan Connectome projects, has been deployed by some Connectomes 
Related to Human Disease projects (see below), and can benefit other groups carrying out 

Figure 4. Example parcellated analyses run using HCP data and the HCP_MMP1.0 cortical parcellation.  
Panels A and F, showing dense and parcellated myelin maps respectively, are very similar despite a 
dramatic dimensionality reduction.  Panel G shows a map of parcellated cortical thickness (in 
millimeters; corrected for folding by regressing out mean surface curvature).  Panels B and C show 
example dense and parcellated task fMRI analysis (LANGUAGE Story vs Baseline).  Panel D shows the 
entire HCP task fMRI battery’s Z statistics (86 contrasts; 47 distinct and 39 sign-reversed versions) 
analyzed in parcellated form and displayed as a matrix (rows are parcels, columns are contrasts, white 
outline indicates the map displayed in Panel C).  Panel E demonstrates a major improvement in Z 
statistics from fitting a task design on parcellated data instead of fitting it on dense data, and then 
parcellating afterwards.  Panels H and I show parcellated functional connectivity maps on the brain 
(seeded from area PGi, black dot). In both cases, the task negative (default mode) network is apparent.  
Panel J shows a parcellated connectome matrix view with the full correlation connectome below the 
diagonal and the partial correlation connectome above the diagonal (white line shows the displayed 
partial correlation brain map).  The figure matches the Connectome Workbench scene available on the 
BALSA database (http://balsa.wustl.edu/RG0x).  Notably, Panel E was generated in matlab and saved 
as a PNG and then loaded in to Workbench as its own tab.  Reprinted from ref8.  	  
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large-scale HCP-style studies (source code at http://www.xnat.org/download/).  Given the 
complexity of the HCP project and the massive size of the HCP dataset, documentation and 
distribution required a multi-faceted approach (Box 2).  
 

BOX 2 – Accessing and using HCP data, software, and protocols.   
 
Overview of the HCP’s Data Sharing.  ConnectomeDB (http://db.humanconnectome.org) 
is the primary repository of HCP imaging, behavioral, and demographic data.  3T 
structural, functional, and diffusion imaging data for ~1100 subjects is shared in 
unprocessed, minimally preprocessed (MPP), and more extensively processed forms 
and staged over 4 major releases (Q1, Q1-Q3, S500, S900) with the final S1100 release 
slated for summer, 2016.  7T data acquired on 180 subjects has been released in part 
with the rest to follow shortly. MEG data acquired from 95 subjects gives a window on 
fast temporal dynamics of the brain and was released in the fall of 2015114.  Importantly, 
the S900 release and the forthcoming S1100 release include the improved intersubject 
registration provided by “MSMAll”.  The HCP_MMP1.0 parcellation is available in BALSA 
(http://balsa.wustl.edu), and individual subject parcellations for each HCP subject will be 
released on ConnectomeDB in the future (anticipated fall, 2016).   
 
HCP Data Is Much Larger than that of Past Studies.  With the high spatial and temporal 
resolution of HCP data, the dataset is at least an order of magnitude larger than widely 
used open access neuroimaging data sets like ADNI115.  For a single subject, the 
compressed NIFTI-formatted unprocessed data is around 10 GB, and the preprocessed 
data is nearly 30GB.   
 
HCP Data Is Widely Used via Multiple Modes of Data Access. To date, >5,200 
investigators have agreed to HCP Open Access Data Use Terms (~520 to Restricted 
Access terms for accessing family structure and other sensitive data).  Users can (i) 
access ConnectomeDB directly to download ‘packages’ for individual subjects, user-
selected subject groups, or HCP-specified groups; (ii) purchase “Connectome-in-a-Box” 
for the cost of the hard drives, which can be shared by investigators at a given 
institution; and (iii) access data via the Amazon cloud for processing on the cloud (or for 
download). Data downloaded directly from ConnectomeDB exceeds 5400 terabytes 
(TB), with an additional 2000 TB transferred via hard drives (Connectome-in-a-Box) and 
the Amazon cloud. 
 
Data documentation.  The richness and complexity of the HCP data requires extensive 
documentation for users to understand what is available, how the datasets are 
organized, and how they were processed, including quality control measures.  Available 
resources include (i) a Reference Manual associated with each data release 
(http://humanconnectome.org/documentation); (ii) HCP course materials (lectures, 
tutorials, and associated data) available at http://humanconnectome.org/courses/); (iii) 
publications, e.g. for database organization90; and (iv) the HCP public wiki 
(https://wiki.humanconnectome.org/display/PublicData/Home), which provides additional 
documentation, FAQs, and updates (including known issues and planned fixes).  
 
Software Sharing.  Also important to the replicability of neuroimaging studies is the 
sharing of the software used for analysis.  Scripts for HCP pipelines are available on 
GitHub (https://github.com/Washington-University/Pipelines/releases), and their usage is 
described in the HCP course materials. This includes pipelines for MEG as well as MRI 
data. Connectome Workbench is available as binaries and source code 
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(http://www.humanconnectome.org/software/get-connectome-workbench.html, on 
GitHub, and in http://neuro.debian.net) along with tutorials. Additionally many of the labs 
that make up the HCP consortia share their software on either their own websites or the 
HCP website.   

 
MRI protocols. The MRI protocols used for the main HCP 3T and 7T scans are available 
at http://protocols.humanconnectome.org/HCP/; HCP-style pulse sequences have been 
widely distributed (http://www.cmrr.umn.edu/multiband/index.shtml).  The HCP-Short 
protocols used for the HCP Lifespan (see below) are at 
http://protocols.humanconnectome.org/lifespan/ 

 
 
HCP-Style Follow Up Studies. The original (healthy young adult) HCP will be succeeded by 
several large-scale imaging projects that use “HCP-style” data acquisition, analysis, and sharing 
to study different populations in health and disease.  Data sharing for many of these projects will 
be managed by the Connectome Coordination Facility (www.humanconnectome.org/ccf), an 
NIH-funded resource devoted to supporting data sharing from the Connectomes Related to 
Human Disease (CRHD) projects (11 currently funded, with more anticipated in 2017) plus three 
Lifespan HCP projects (see Figure 5). The CCF is an extension of the ConnectomeDB 
infrastructure and will provide a common interface for searching within and across projects. In 
addition, it is developing common acquisition protocols and maintaining the HCP’s processing 
pipelines to maximize cross-study comparisons and analysis, and partnering with other 
connectomics studies such as the Adolescent Brain Cognitive Development (ABCD) study and 
UK Developing HCP (dHCP http://www.developingconnectome.org/) to encourage 
harmonization of acquisition and analysis methods.  Versions of the HCP-Short Protocol (see 
Supplementary Topic #4) have been adapted for a variety of vendors and scanner models, with 
the goal of producing images of similar spatial and temporal resolution.   
 

 
 
 
 
 

Figure 5. Current and future projects that use HCP-style data acquisition, analysis, and sharing.  
Projects shown in green will use the Connectome Coordination Facility (CCF, in purple) as their 
primary mode of data sharing. 
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Concluding comments 
 
The NIH had two interrelated core goals in launching the HCP: 1) to generate a publicly shared, 
widely used repository of high quality multi-modal neuroimaging data suitable for mapping the 
human connectome, and 2) to advance the methods used in neuroimaging research.   
 
More than 140 studies have acknowledged the use of HCP data, and for half of these the 
authors were largely or entirely outside the HCP consortium 
(https://wiki.humanconnectome.org/x/YQDJAw). These studies address a wide range of 
questions using various imaging modalities.  Five brief examples highlight some of this 
progress. Smith et al.,92 identified a ‘positive-negative’ phenotypic axis that covaries with 
differences in the strength of functional connectivity in a subset of brain regions that are 
generally implicated in higher cognitive functions.  Yeo et al93 investigated the overlap and 
segregation of the brain’s functional networks, finding that association regions tend to overlap 
with at least two networks whereas somatosensory and visual regions are more isolated. Wang 
et al.94 investigated functional network parcellations at the individual level using HCP data.  
Hawrylycz et al.95 demonstrated correlations between gene expression patterns in postmortem 
human cortex and HCP-based in vivo functional connectivity. Tavor et al.96 showed that a model 
relating task-independent (rfMRI) measurements to task activity can accurately predict task 
activation maps for unseen subjects, suggesting a coupling between brain connectivity and 
function at the level of individual subjects.  After release of the final “S1100” imaging and 
genotyping data (summer, 2016) and the individual-subject cortical parcellations (projected fall, 
2016), we anticipate that a growing fraction of studies using HCP data will use the full set of 
available subjects, better-aligned data, multimodal parcellations of group average and individual 
subjects, and family structure (e.g., twins). Capitalizing on the full richness of the HCP data 
offers the best prospects for robust and neurobiologically grounded findings. Even with large 
amounts of high quality data, it remains extremely important to use caution in interpreting 
complex neuroimaging datasets and the indirect inferences related to brain connectivity 
available from neuroimaging.  Neither functional connectivity based on rfMRI nor structural 
connectivity based on dMRI tractography provides good quantitative estimates of the actual 
strength of direct anatomical connectivity between areas or regions. This reflects a variety of 
methodological biases and other limitations that have become better understood in recent years 
2,34,97 see Supplementary Topic #15), but remain serious limitations even with the advances 
provided by the HCP-style paradigm.  Research continues to further validate non-invasive 
connectivity methods and maximize their accuracy.   
 
The HCP-style paradigm brings together a wide range of methodological advances, many 
provided by investigators or projects outside the HCP, and others reflecting direct HCP 
innovations.  New MRI scanner technology (Siemens Prisma) and pulse sequence technology 
(multi-band) were developed in part through the HCP, enabling imaging of finer details faster.  
Many improvements in image distortion correction, registration, and data-driven image 
denoising enable selective removal of artifacts while preserving the precision of the signals of 
interest.  The CIFTI grayordinates analysis framework together with areal-feature-based surface 
registration largely compensates for individual variability across subjects without causing or 
resorting to blurring of the data.  A multi-modal cortical parcellation provides a new 
neuroanatomical foundation for studies of the human cerebral cortex and is a valuable 
prerequisite for generating area-to-area connectomes in individuals and group averages.  
Intuitive, user-friendly data visualization software together with integrated neuroimaging 
databases and software pipelines enable easier data processing and sharing.   
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The overarching objectives of the HCP-style paradigm are (i) to acquire and analyze 
neuroimaging data as accurately as possible in each individual from their original brain imaging 
voxels to their individually mapped brain areas; (ii) to use precise inter-subject alignment while 
avoiding smoothing to minimize blurring across brain areal boundaries when comparing results 
across individuals, groups, and studies; and (iii) to routinely share neuroimaging data in a way 
that facilitates conclusive cross-study comparisons. Unlike traditional volume-based approaches 
that often result in statistically significant ‘blobs’ or 3D coordinates of unclear neuroanatomical 
identity, the HCP-style paradigm aims to remain as faithful as possible to the underlying 
neuroanatomy, even in the face of the remarkable individual variability of human brains. Indeed, 
the gains in spatial sharpness and clarity provided by the HCP-style paradigm (see Figure 6) 
are qualitatively analogous to those made in astronomy after the introduction of adaptive optics 
and space telescopes to overcome the atmospheric blurring that plagues conventional ground-
based telescopes98.  We provide concrete, generally applicable guidelines for individual labs 
wishing to embark on a new study using the HCP-style paradigm, though of course not all 
recommendations will fit every study, and methods will continue to improve (Supplementary 
Topic #16).  	  
 
We propose that the diverse technological and conceptual advances in imaging integrated by 
(and developed within) the HCP meet the criteria of a new paradigm for neuroimaging 
research99. The “HCP-style” paradigm has a differing set of assumptions (e.g., blurriness in 
brain images is not a ‘fact of life’ but an avoidable artifact of traditional methods and that 
neuroanatomical localization is critical to understanding the brain).  It invokes new terminology, 
and provides substantial new capabilities for further research. It is also disruptive to ‘business 
as usual’ as practiced by the majority of neuroimaging investigators, and legacy data may not  

	  
 
 
 

Figure 6.  Fidelity of localizing area MT+ (architectonic area hOc5) when mapped to the cortical surface by 
different methods. Left: volume-based mapping of probabilistic cytoarchitectonic area hOc5103 from 10 
postmortem subjects mapped to a cortical atlas surface.  Black arrows point to locations where the volume-
based mapping spreads across gyral and sulcal folds.  Center: Surface-based registration of hOc5 from the 
same 10 subjects mapped to individual surface reconstructions, then to a surface-based atlas using 
FreeSurfer’s folding-based surface registration method73.  White arrows identify ‘outlier’ hOc5 from individual 
subjects that are not well aligned to the FreeSurfer group average owing to imperfect correspondence 
between areal boundaries and sulcal folds.  Left and center panels adapted from ref. 38. The white oval is in 
the same location across all panels showing how the volume-based alignment drifts away from the surface-
based alignments, in addition to having substantially lower cross-subject overlap. Right: Group average 
cortical myelin map (from 196 HCP subjects) with a yellow/orange/red hotspot indicating the MT+ complex and 
retinotopic areal Maximum Probability Maps (MPMs) (from 12 non-HCP subjects) both registered using areal-
feature-based surface registration and ‘de-drifted’ (see Supplementary Topic #13) (adapted from ref.104).  As 
shown in Supplementary Fig. 10, the white dots represent a contour along which functional connectivity rapidly 
changes that aligns with the border between retinotopic areas MT and pMST from a separate study.  This is 
an example of the more conclusive cross-study, cross-modal boundary comparisons made possible by the 
HCP-style analysis paradigm.  Data at http://balsa.wustl.edu/kNpD. 
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be easily comparable with data from the HCP-style paradigm while maintaining the new 
paradigm’s improved standards of spatial fidelity and neuroanatomical localization  
(Supplementary Topic #17, 18).  Thus, moving to the new paradigm should not be undertaken 
lightly. That said, we believe the benefits decidedly outweigh the costs, as the new paradigm 
opens up a variety of novel analysis strategies that will likely accelerate our understanding of 
human brain structure and function and may even prove useful in a clinical setting. Instead of 
relying on rough evidence of spatial proximity as in the old paradigm, we aim in the new 
paradigm to precisely compare the overlap and boundaries of results from differing studies to 
see if they likely refer to the same brain areas or not.  Additionally, we are able to separate 
differences in brain function or connectivity much more precisely from differences in brain areal 
size, shape, and position.  We can investigate the significance of variations in individual subject 
areal topologies from the population’s typical topology.  Finally, the HCP-style paradigm is better 
positioned to exploit further improvements in brain image acquisition that will enable even finer 
grained study of the brain at the level of cortical layers or columns, as well as finer subcortical 
organization100-102.  Nonetheless, the challenges to neuroimaging remain daunting, and we hope 
that new technologies and ideas will lead to further paradigmatic advances in the future. 
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The Supplementary Information is divided into three main parts.  Part I (Supplementary Notes) 
includes 18 brief text notes, each expanding on a specific technical or discussion issue in the 
order that it was raised in the main text. Supplementary References follow in Part II.  Part III 
(Supplementary Figures) includes 12 figures that illustrate important points raised in the main 
text or supplementary notes.   
 
I. Supplementary Notes 
 
1. What do the terms T1-weighted and T2-weighted mean in terms of MRI and myelin contrast? 
 
Students learning about brain imaging (for research or clinical purposes) are exposed early on 
to the distinction between “T1-weighted (T1w)” and “T2-weighted (T2w)” images.  T1w images 
have an intensity profile of white matter (WM) > grey matter (GM) > cerebrospinal fluid (CSF).  
In contrast, T2w images have the opposite intensity profile (CSF > GM > WM).  Although these 
terms were originally based on the types of MR contrast in the images from simple gradient 
echo or spin echo sequences, they have come to refer more to the direction of contrast in MRI 
images, given the increasing complexity of the MR pulse sequences currently in use for 3D high 
resolution brain imaging (and scanner manufacturers, radiologists, and many brain imagers use 
the terms in this way).  Two particular 3D sequences in current widespread use are 3D 
MPRAGE (magnetization prepared rapid gradient echo)1 and 3D SPACE (single slab variable 
flip angle turbo/fast spin echo)2.  However, none of these terms is completely accurate in 
describing the MR contrast mechanisms that create each image.  The T1w contrast 
(WM>GM>CSF) in an MPRAGE image is dominated by the T1 relaxation mechanism but also 
has T2* and proton density (PD) components3.  On the other hand, the contrast in a SPACE 
image can be manipulated via the variable flip angle scheme for the refocusing RF pulse train4 
to generate T2w5, T1w6, or proton density weighted (PDw) images. The T2w contrast 
(CSF>GM>WM), which contains both T1 and T2 relaxation mechanisms5, is the most commonly 
used contrast for 3D SPACE and was the choice in the HCP’s T2w SPACE protocol. Given the 
complexity surrounding the MR contrast mechanisms in 3D structural acquisitions, we refer to 
the HCP MPRAGE and SPACE acquisitions simply as T1w and T2w images, consistent with 
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their intensity profiles (albeit with no intention to imply that just a single underlying contrast 
mechanism is present).  We also note that in our experience the best results for T1w and T2w 
images are achieved using the 3D MPRAGE and SPACE sequences at 0.8 mm isotropic 
resolution or better, half the thickness of the thinnest cortex.   
 
T1w and T2w images can be used to compute a T1w/T2w ratio in order to map myelin content 
in cortical grey matter7.  As mentioned above, T1, T2, T2*, and PD all contribute to some degree 
to the contrast in the T1w and T2w images.  The lipids in myelin affect T1 contrast8, and iron, 
which colocalizes with myelin particularly in cortical grey matter9, affects T2* contrast8.   Proton 
density also appears to contribute to grey/white contrast and may also contribute to intracortical 
myelin contrast10.  Thus, many types of MR contrast also contribute to the T1w/T2w ratio and 
hence to the grey matter myelin maps produced by this ratio.  We treat these maps as an in vivo 
“myelin stain,” rather than a quantitative measure of MR properties, and their validation is 
primarily neuroanatomical, rather than biophysical (i.e. they correlate strongly with known 
patterns of myelination within the grey matter7).  Though there has been debate as to whether 
the T1w/T2w ratio is the best approach for in vivo myelin mapping (as opposed to alternatives 
such as quantitative T1 images10-14, quantitative magnetization transfer images, quantitative T2* 
images15, T1w/T2*w ratio images16, myelin water fraction images, etc), we are unaware of an 
approach that produces as high a contrast-to-noise ratio (CNR) per unit acquisition time and 
field strength, enabling spatial resolution to be maximized within a fixed scan time (< 13 min 
combined between the T1w and T2w acquisitions at 3T and 0.8mm isotropic).  Also, T1w and 
T2w images are both very useful for generating accurate white matter and pial surface models 
and subcortical segmentations17.  Thus, we recommend that most studies acquire both images 
(and then the T1w/T2w myelin maps come ‘for free’), but studies focusing on quantification may 
elect to use some of their available scan time to acquire quantitative MR parameter maps.  A 
FLAIR type acquisition (also based on the 3D SPACE sequence with an inversion recovery 
preparation) could be used in place of the T2w SPACE acquisition if FLAIR contrast is important 
for other reasons. However, such FLAIR images do not have as much myelin contrast or as 
high SNR as the T2w images mentioned before, so the myelin maps they produce are noisier.   
 
2.  Why is the HCP’s Diffusion Protocol Special?  
 
The HCP’s diffusion protocol differs from traditional diffusion imaging in several important ways.  
It uses many more diffusion encoding directions (270), enabled by an hour-long scanning 
session and three-fold multi-band acceleration (MB=3), which incurs little SNR penalty.  The 
WU-Minn-Ox HCP dMRI data were acquired on a customized scanner with stronger diffusion 
encoding gradients that can operate with 100 mT/m maximal gradient strength (Gmax).  This 
reduces diffusion encoding times (TE) compared to standard gradients of 40 mT/m (Siemens 
Trio) for a given diffusion weighting magnitude (b value). Consequently, signal loss due to T2 
decay during diffusion encoding is significantly less and the resultant gain in SNR is traded for 
higher spatial resolution. HCP dMRI data achieved 1.25 mm isotropic resolution with sufficient 
SNR for b-values as high as 3000 s/mm2 and used b shells of 1000, 2000, and 3000 s/mm2 18.  
(Note that Siemens subsequently introduced the 3T Prisma, developed in part through their 
collaboration with the HCP with a maximum gradient strength of 80 mT/m, which enables users 
in the community to use HCP-style diffusion protocols).  The 7T data also have high SNR with 
an even higher spatial resolution (1.05 mm isotropic), 130 directions at b-values of 1000 and 
2000 s/mm2 19 (see Supplementary Fig. 2).  The MGH/UCLA HCP consortium took a different 
approach with their even more powerful gradients (300 mT/m Gmax) by scanning subjects at 
1.5mm isotropic resolution and b values up to 10000 s/mm2 20. Both HCP consortia chose to use 
the original monopolar (i.e., Stejskal-Tanner21) diffusion encoding sequence.  It has a shorter TE 
relative to the bipolar (twice-refocused) sequence22 that has been popular for whole brain 
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diffusion MRI in the last decade.  The bipolar sequence reduces eddy currents during 
acquisition at the expense of an increased TE and thereby reduced SNR. The HCP could 
tolerate substantially worse eddy current effects with the monopolar diffusion encoding at high 
b-value because eddy current distortions are instead corrected during post-processing using a 
newly developed approach23 that goes beyond traditional affine image registration (see Note #8 
below).  The HCP also acquired two sets of scans having reversed phase encoding directions. 
This enables correction of signal that had piled up in one phase encoding direction and spread 
out in the other without an SNR penalty. Indeed SNR actually increases across the image when 
both datasets are averaged, producing a relatively unbiased estimate of the signal intensities 
throughout the final image24). Tractography examples indicative of the data quality are shown in 
Sotiropoulos et al.18.  Another example (Supplementary Fig. 3) illustrates the ability to precisely 
map patterns of cortico-striatal connectivity from human HCP tractography data that closely 
parallel the tracer-based connectivity patterns reported in the macaque.  
 
3. Simultaneous Multi-slice (Multi-Band) Echo Planer Imaging (EPI) 
 
The high spatial and temporal resolution of the HCP data would not have been achievable 
without the accelerated imaging enabled by Simultaneous Multi-slice (Multi-Band) EPI. This 
transformative development has become the new standard for EPI imaging, the workhorse 
sequence for brain fMRI and dMRI.  In MR imaging, there is always a tradeoff between 
resolution and data acquisition times.  Higher resolution data simply take longer to acquire. In 
fMRI, this tension leads to longer TRs (i.e. worse temporal resolution) with increasing spatial 
resolution.  In dMRI, the trade-off is between spatial resolution and angular resolution (in q-
space).  The approach adopted by the HCP to substantially alleviate this tradeoff is the 
simultaneous multi-slice (SMS), multi-band (MB) technique that was first employed in brain 
imaging to reduce the time to acquire very high resolution functional imaging data25.  In 
conventional EPI image acquisition, each 2D slice covering the volume of interest is acquired 
sequentially in time.  In SMS/MB, multiple slices are excited and acquired simultaneously using 
multi-banded pulses.  The resultant image represents the sum of the simultaneously excited 
slices.  These overlapping slices can be unaliased using spatial information inherent in the 
multi-channel array of coils that are used for receiving the signals (see Supplementary Fig. 4). 
These coils are sensitive to regions of the brain in close proximity to their physical locations and 
lose sensitivity with increasing distance. Each coil yields a linear combination of signals from the 
different slices (weighted by their sensitivity profiles), and a matrix inversion provides a solution 
to separate the slices from one another.  The imaging time is reduced by the number of 
simultaneously excited slices (MB factor), which receive the same contrast encoding.  This is 
especially important for EPI-based fMRI and dMRI, as contrast encoding time usually outweighs 
the EPI readout time.  The MB factor cannot be increased too high, however, as it is affected by 
the number of receive coils in the array, their size, proximity to the sample, and layout.  There is 
a penalty to be paid in noise enhancement and cross-slice contamination with increasing MB 
factors, which must be kept to a negligible level, but these parameters can be measured to 
determine feasible MB acceleration factors. Displacing slices with respect to each other at the 
image acquisition stage prior to unaliasing significantly improves the maximum usable MB 
factors26.  In the HCP’s 3T fMRI data acquisition, an MB factor of 8 was used with a 32-channel 
array coil after extensive testing.  This allowed 2 mm isotropic whole brain coverage in 0.72s as 
opposed to the 5.6s that a single band fMRI sequence would take to acquire such data, 
significantly improving data quality and SNR efficiency27.  For HCP diffusion MRI, a MB factor of 
3 was employed, making it feasible to obtain high spatial and q-space resolution data.   In dMRI, 
the ultimate limitation in acceleration is the T1

 relaxation of spins, as going faster than 
approximately 2xT1 per volume of interest (whole brain for the HCP) becomes SNR-inefficient.  
However, when high spatial resolution is employed in dMRI, MB factors are restricted by RF 
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power deposition before reaching this ultimate limit.  The dMRI sequence requires more power 
than the fMRI sequence because, as a spin echo sequence, it requires the use of a 180-degree 
refocusing pulse in addition to the 90-degree excitation pulse that it shares with a gradient echo 
fMRI sequence.  Further, the MB pulses aggravate the situation because they also increase the 
power demands. Thus the sequence is limited by the safely achievable peak power and total 
power deposited in the subject. There are solutions to these limitations developed by the 
HCP19,28,29, some of which were employed in the 7 Tesla dMRI component of the HCP data 
acquisition (as higher field strength also leads to higher power requirements). 
 
4. HCP-Short Protocols 
 
The HCP-Short protocols are similar in key aspects to the HCP-Full protocol, but are less than 
half the total scan duration (~1-2 h total scanning over one or two sessions vs ~4 h over four 
sessions).  HCP-Short is designed for studies in which the subject population may not tolerate 
intensive multi-session scanning and individual scans of 15 min duration, owing to age and/or 
brain disorders.  The HCP-Short protocols aim to provide sufficient high-quality data to enable 
HCP-style analyses, including selective removal of artifacts, intersubject registration using areal-
feature-based alignment (e.g., MSMAll), and cortical parcellation using the areal classifier.  
There are multiple variants of the HCP-Short protocols, because some protocols have project-
specific aspects (e.g., related to the particular age range or brain disorder under investigation).  
The initial HCP-Short protocol was developed for the HCP Lifespan Pilot project, a 1-year effort 
by both HCP consortia to obtain pilot data for the recently launched HCP Lifespan Development 
and Lifespan Aging projects (see Figure 5 in main text).  We describe below adaptations of the 
Lifespan HCP-Short protocols proposed for the HCP-Aging and HCP-Development Lifespan 
projects, which will both use the 3T Prisma platform at each of the four consortium data 
acquisition sites.  Note that these protocols are currently undergoing further piloting, with final 
protocols and parameters to be available at http://protocols.humanconnectome.org/lifespan/.   
 
Structural scans for HCP-Short are similar to those for HCP-Full, but the spatial resolution is 
slightly lower (0.8 mm isotropic voxels instead of 0.7 mm), and only a single pair of T1w and 
T2w scans is collected (albeit with a repeated acquisition if the scanning technician deems them 
to be only “fair” or worse quality). This increases SNR and shortens scan duration slightly (13 
min total for T1w and T2w vs 16 min) while preserving the benefits of high spatial resolution for 
cortical segmentation and maps of myelin and cortical thickness. Additionally, the Lifespan HCP 
may use ‘volumetric navigators’ (vNavs) to record (and possibly correct for) within-scan head 
motion30,31 – see also Note #5 below.  
 
For fMRI scans, the HCP-Short protocol acquires data at the same spatial and temporal 
resolution as for HCP-Full (2 mm isotropic; TR = 0.72-0.8 s) using a MB factor of 8. Phase 
encoding is along the A/P axis for the Prisma (vs the L/R axis for the customized WU 
Connectom scanner).  In addition, HCP-Short acquires a spin-echo AP-PA field map pair. 
 
For rfMRI, HCP-Short scans are shorter in duration (usually 5.0-5.5 min/scan, but 3 min/scan for 
younger children, vs 15 min/scan for HCP-Full), and in total scan time (30-40 min vs 1 h). The 
reproducibility of resting-state networks (RSNs) increases steeply with total scan time over the 
first 30 min of rfMRI acquisitions (with additional improvement up to 80-100 min)32. It may be 
possible to augment information about RSNs using task-fMRI scans (see below), given that 
functional connectivity is similar when measured during tasks or the resting state33, and this may 
add to the useful data for intersubject alignment and individual-subject parcellation. 
 



	 5	

The task-fMRI aspect of the HCP-Short protocols utilized to date is much briefer (ranging from 
no task fMRI to ~30 min total, vs 1 h for HCP-Full) and allows for project-specific tasks 
appropriate for particular age ranges or brain disorders.  The HCP Lifespan projects are 
currently considering options to acquire task data using up to five tasks, each with a notably 
short (~2 min) scan duration.  More generally, the HCP-style paradigm supports diverse task 
fMRI protocols to reflect project-specific aims without major adverse impacts on intersubject 
registration (“MSMAll” surface registration does not use task-fMRI activations) or areal 
classification (which also does not require task-fMRI activations, cf. Ref. 34). 
 
For dMRI, HCP-Short acquires 22 min of dMRI data (four 5.5 min scans) at a spatial resolution 
of 1.5 mm isotropic voxels (vs. 1.25 mm for HCP-Full), two b values (1,500 and 3,000 s/mm2) 
and ~75-90 directions/shell.  The lower maximal gradient strength for the Prisma (80 mT/m, vs 
100 mT/m for the WU customized Connectom scanner) yields a longer TE and slightly lower 
SNR per image, but HCP-Short uses a simultaneous multi-slice (“multi-band”) factor of 4 for 
dMRI on the Prisma (vs. 3 for main HCP) while keeping within SAR and peak power limits 
because of additional pulse sequence development that occurred after the main HCP began.  
Possible refinements are being evaluated that would enable a MB factor of 5 or 6 using the two 
channel parallel transmit (pTx) capability of the Prisma and the local and global SAR regularized 
multi-band pTx pulses recently developed at UMinn29,35,36.   
 
The Lifespan HCP-Short protocol will also likely include a ~5 min Arterial Spin Labeling (ASL) 
perfusion MRI scan, which provides a quantitative measurement of cerebral blood flow (CBF). 
Since perfusion is normally coupled to metabolism, ASL is a useful surrogate marker of basal 
brain function, as well as aiding in the discrimination between neuronally-related vs 
cardiovascular-related effects seen in BOLD imaging. The Lifespan HCP projects are currently 
evaluating both background suppressed 3D segmented GRASE pseudo-continuous ASL 
(pCASL)37 and 2D multi-band EPI based pCASLa38. 
 
5. Head Movement During 3D Structural Scans  
 
Head movement during 3D T1w and T2w scans produces currently uncorrectable image 
blurring and banding and is a major problem for both research and clinical neuroimaging.  Even 
a single translation of a millimeter or so during a scan of 6 – 8 min duration will cause blurring.  
The main HCP reduced the problem by acquiring two T1w and T2w images. Moreover, if these 
were not of adequate quality - rated good or excellent based on a systematic manual QC 
evaluation 
(http://humanconnectome.org/documentation/S900/HCP_S900_Release_Appendix_IV.pdf, 
parts I – III, pp. 17 - 28), subjects were asked to complete an additional scanning session where 
up to two additional pairs of T1w and T2w images were acquired.  All T1w and T2w scans from 
the same session that were rated good or excellent in overall quality were used in further 
processing.  Though the HCP invested in an external motion tracking camera, this technology 
was in its very early stages, and problems associated with tracking chip attachment to skin and 
skin movement independent of the rigid body motion of the head were not solved. As a result 
this approach was abandoned early in the project.  An alterative approach that shows promise 
involves ‘navigator’ sequences that acquire low resolution EPI data within the dead time of T1w 
and T2w sequences.  This data can be used to detect subject motion, and, in addition, adjust 
the imaging gradients to compensate for subject movement, avoiding blurring issues.  Also the 
sequence can reacquire lines in k-space that were acquired during subject movement so as not 
to use k-space data corrupted by motion in the final Fourier reconstruction.  If the robustness of 
these approaches can be established, future studies may wish to take advantage of such online 
movement correction30,31,39 to enable consistently high quality structural image acquisitions.   
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6.  Gradient Distortion 
 
Spatial localization as well as diffusion encoding is achieved through the gradients of the MR 
system.  However, the gradients are not perfectly linear in space, which leads to image 
distortions as well as errors in diffusion encoding.  For dMRI in particular, such gradient 
nonlinearities can influence the magnitude and direction of diffusion-sensitizing gradients40 in 
addition to spatial distortions.  Spatial distortions due to gradient nonlinearities need to be 
corrected if images acquired on different scanners are to be compared.  Also the correct 
diffusion weighting magnitude and direction must be used if one is to avoid errors in the 
estimated diffusion parameters that drive tractography algorithms.  In the HCP these corrections 
were implemented within the HCP’s minimal preprocessing pipelines17. 
 
A second problem exists with respect to calibration of the gradients.  For example, if the 
sequence calls for 40 mT/m, do we actually get 40 mT/m or just 39.2 mT/m?  Usually the 
calibrations are within a small percentage of the targeted value, but they are not exact. This was 
initially a problem for combining 3T and 7T data on the same subject in the main HCP.  These 
issues were carefully evaluated and calibrated using a grid “phantom” and corrected in 
postprocessing, by enabling additional degrees of freedom in the boundary-based registration of 
the HCP’s minimal preprocessing pipelines17,41 (from 6 DOF to 12 DOF). 
 
7. Why Spin Echo Field Maps? 
 
Maps of susceptibility-induced image distortion can be derived from a pair of spin-echo EPI 
images with reversed phase encoding directions.  We call these “Spin Echo Field Map” scans in 
the HCP-style protocols.  They offer several advantages over the more traditional dual-echo, 
gradient-echo based field maps, where the magnetic field is computed based on the phase 
difference of images taken with two differnt echo times.  Spin echo field maps are faster to 
acquire (and thus more robust to subject motion), and can be matched exactly to the gradient 
echo fMRI data in terms of resolution, geometry, and distortion (via matching the echo spacing).  
As a result, the distortion is identical between the two images, making image registration of the 
distorted spin echo and gradient echo fMRI images substantially easier.  The HCP tested the 
two distortion correction approaches and found that they performed similarly, leading to the 
recommendation that the faster imaging approach be used.  Importantly, additional information 
can be obtained from the spin echo images.  Gradient echo fMRI images suffer from signal 
dropout due to dephasing in areas of high magnetic field inhomogeneity that is absent in the 
spin echo field map images with similar image distortion.  This difference can be used to 
segment these regions of dropout, and these segmentations can serve as useful information to 
know where the fMRI signal is likely to be unreliable.   
 
Additionally, the spin echo and gradient echo images can be combined to estimate the 
difference in the effects of the B1 transmit field the two images, along with an estimate of the B1 
receive field on the fMRI image34.  This receive field is more accurate than the field generated 
from T1w and T2w images acquired in a different imaging session (and which also experience 
somewhat different transmit field effects), and thus can be used to bias-correct the fMRI data 
without the need to acquire additional sequences or use additional preparatory time on the 
scanner.  For some fMRI analyses (e.g., resting-state correlations and task z-statistics), bias 
correction of fMRI is not needed. However, for other analyses (e.g., beta maps, variance maps), 
an fMRI intensity bias field can make the data less biologically interpretable across the whole 
image.  For such analyses, accurate intensity bias correction is important34.  The latest version 
of the HCP’s minimal preprocessing pipelines (v3.15.1 or later) now enables this sort of 
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correction; moreover, as a simple multiplicative bias field, it can be retrospectively applied to 
prior HCP data as well.     
 
8.  Eddy Current Distortion Correction and dMRI Outlier Removal 
 
A major problem for dMRI data arises from eddy currents induced by magnetic field modulations 
that are distinct for each diffusion direction and are more pronounced in the mono-polar 
diffusion-encoding scheme chosen by the HCP (for SNR efficiency as mentioned in Note #2).  
dMRI data also suffer from signal dropouts caused by head movement and other sources, 
analogous to those that plague fMRI data.  The HCP’s ‘eddy’ software (released in FSL, and not 
to be confused with the older ‘eddy_correct’ script based on affine registration) corrects for 
linear and nonlinear eddy current distortions and also has an option to use model-based outlier 
detection and replacement to correct corrupted individual slices24,42,43.  Counter to the typical 
practice of individually registering each diffusion-weighted volume to a reference, eddy uses all 
data volumes jointly.  A Gaussian-process-based generative data model is used to make 
predictions about what the 3D dMRI volumes should look like at every point in q-space given 
knowledge of the different distortions. Inversion of this model enables accurate estimation of the 
distortion fields, which can then be applied to correct the data.  This combination of monopolar 
acquisition and eddy-based post-processing results in fewer artifacts and less distortion than 
traditionally achieved, yet with lower TE and therefore higher SNR, which the HCP used to 
achieve higher spatial resolution (see Note #2). 
 
9.  More about the Global Signal and Temporal Cleanup of fMRI Data 
 
One idea that has gained substantial currency in the literature is that global signal fluctuations 
are often induced by direct effects of subject movement44-46.  Invoking this hypothesis, some 
argue that it is necessary to regress out the global signal in order to adequately correct for 
subject movement.  However, to our knowledge, no direct biophysical causal mechanism has 
been proposed to account for subject movement leading to global fluctuations in the fMRI signal 
(particularly those with the tissue specific and area specific effects shown in Supplementary 
Figs. 5 and 6).  Instead, it is worth considering the kinds of effects seen in fMRI images that are 
clearly attributable to head movement and which can be removed using ICA+FIX (ICA+FIX 
consists of detrending, aggressive 24 movement parameter regression, and non-aggressive 
noise ICA component regression): 1) Largely linear effects of moving the head within an 
inhomogeneous receive coil.  These effects tend to produce “rings” around the perimeter of the 
brain, reflecting signal intensity increases as the head gets closer to the head coil on one side 
and decreases as the head gets further from the coil on the other side.  Such spatially specific 
effects are readily identified by ICA+FIX and eliminated from the data.  2) Complex interactions 
between head motion and the magnetic field inhomogeneities in the fronto-polar, orbito-frontal, 
anterior temporal, and inferior temporal cortices.  These effects are also spatially specific and 
are readily identified by ICA+FIX and eliminated from the data.  3) “Spin history” effects of 
movement caused by some portions of the brain being excited sooner than they should and 
other parts being excited later than they should by the slice selection profiles.  In a ‘worst case’ 
scenario where the head moved exactly one slice up or down in the slice direction, this would 
produce a strong banding pattern in the data.  Such bands are readily identified by ICA+FIX and 
eliminated from the data.  In summary, no plausible biophysical mechanism has been proposed 
by which head movement would induce a truly global change in fMRI signal intensity (short of 
the subject completely exiting the head coil), as opposed to spatially specific changes in fMRI 
signal intensity that are visible to spatial ICA-based approaches.  Further, the global fMRI 
signals are highly tissue and area specific (Supplementary Figs. 5 and 6), and no plausible 
biophysical mechanism has been proposed for how subject motion could directly cause such 
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phenomena.  Instead, the hypothesis advanced in the main text Box 1 about global fluctuations 
being partly due to non-neuronal physiological fluctuations and partly due to neural effects 
seems much more likely.   
 
Approaches such as ICA+FIX and similar methods47,48 are attractive for removing the direct 
temporal image intensity effects of movement from fMRI data (along with other spatially specific 
effects like MRI physics related artifacts or arterial and venous pulsation artifacts).  Indeed, 
ICA+FIX results approach that of the more aggressive censoring (‘scrubbing’) approach when 
movement becomes severe, but are not forced to make binary ‘scrub/not scrub’ choices based 
on thresholds in framewise displacement (FD) and/or framewise image intensity difference 
(DVARS) measures that may themselves be quite noisy in high temporal resolution data.  
Instead ICA+FIX derives a weighted solution directly from the data.  That said, it remains an 
open question whether scrubbing (for example, based on those frames where ICA+FIX begins 
to approach the scrubbing solution by removing substantial amounts of unstructured noise 
variance from the data) would be useful if we put aside for a moment the effects of global noise.  
A similar question can be asked regarding the standard bandpass filtering that is often using to 
clean fMRI data, but has not been demonstrated to be useful above and beyond ICA+FIX and 
appropriate global noise cleanup for structured noise removal.   
 
Unfortunately, white matter and CSF timeseries regression are unlikely to represent an effective 
approach to global noise cleanup, as they have relatively little correlation with the global 
fluctuations as long as they are derived from ROIs that are free from grey matter contamination 
(which can arise from spatial smoothing or partial volume effects of ‘white matter’ voxels 
encroaching into gray matter, particularly in low resolution datasets), see also Supplementary 
Fig. 5.  Indeed approaches that claim to remove global artifacts without global signal regression 
using white matter or cerebrospinal fluid regressors are likely actually removing the much 
stronger mean grey matter signal that contaminates voxels near the grey matter. These 
approaches would likely behave differently if white matter and cerebrospinal fluid tissue masks 
were eroded by at least 2 imaging voxels or 4mm from the grey matter.  Similarly it is not clear 
that physiological noise modeling approaches, such as that currently implemented in FSL’s 
PMN47 will deal with all global noise, though they will likely help.  Imperfections in the modeled 
effects of physiological noise parameters on BOLD fMRI data will lead to incomplete 
physiological noise clean up.  As mentioned in the main text Box 1, a recommendation for the 
complete approach to fMRI timeseries noise cleanup will have to wait until a selective and 
effective approach to global noise cleanup becomes available.   
 
Besides ICA+FIX48,49 and ICA-AROMA50,51, Multi-Echo-ICA (ME-ICA) is another approach that 
uses ICA to identify and remove non-BOLD noise components from functional timeseries52,53.  In 
this approach, multiple images are acquired at different echo times (TEs), and each component 
is scored as to how well it fits a T2* or BOLD-like decay curve.  Importantly, although this 
approach is able to separate BOLD-like from non-BOLD-like components, it does not remove 
BOLD-like global fluctuations from physiological sources (e.g., the global fluctuations in 
deoxyhemoglobin from rate and depth of breathing, heart rate, and end tidal pCO2 mentioned in 
the main text Box 1).  Thus, it does not represent a solution to the global signal/global noise 
problem raised here.  Additionally, multi-echo EPI is currently limited in the spatial and temporal 
resolution that it can achieve (on the order of 4 mm isotropic in published results with a TR of 
2.5 s).  With the incorporation of multi-band into a multi-echo sequence, the spatial-temporal 
resolution of this technique should be improved, enabling accurate cortical analysis (i.e., 2.5 mm 
isotropic or better).  At that point, a thorough evaluation of the pros and cons of standard multi-
band vs. combined multi-band and multi-echo should be done. Tradeoffs to consider include 
spatial-temporal resolution and temporal SNR, relative to performance in timeseries de-noising. 
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Currently, we recommend using one of the other ICA-based techniques with standard multi-
band fMRI.  It is possible that the temporal resolution recommendations of <1 s could be relaxed 
for multi-echo techniques, though the impact of fewer timepoints on multi-variate methods such 
as ICA or partial correlation would need to be investigated.   
 
10.  Selective Spatio-temporal Smoothing of Unstructured Noise  
 
A major limitation of spatial and temporal smoothing (or filtering) is that they smooth signal and 
noise indiscriminately.  When using smoothing to improve SNR, the data is also being blurred 
across areal boundaries or removing high frequency temporal information that is known not to 
be fully noise54,55.  For the purposes of estimating dense functional connectivity, an attractive 
alternative makes use of Principal Components Analysis (PCA) to represent an fMRI 4D 
timeseries as a series of weighted spatial eigenvectors, ordered according to the size of their 
eigenvalues.  The eigenvalues of the PCA decomposition together form an eigenspectrum (a 
Wishart distribution in the null case56).  A white noise timeseries will have this characteristic 
spectrum of eigenvalues, and structured signal (or noise) present in the data will increase the 
eigenvalues above and beyond this null eigenspectrum.  Even in a dataset containing structured 
signal (e.g. area-specific resting-state fluctuations), the tail of the eigenspectrum will be largely 
unstructured noise.  A Wishart function can be fit to this tail, making a prediction of the null 
eigenspectrum for the dataset.  This null distribution can be subtracted from the data, forcing 
most of the eigenvalues representing noise to zero, and the PCA series can then be converted 
back to a timeseries that has higher SNR (for individual subjects), or correlated as a PCA series 
with higher SNR and fewer artifacts (for group data).  Although reducing the small eigenvalues 
may remove some very weak signals, the technique avoids the blurring of strong signals that 
occurs with typical spatial and temporal smoothing.  Additionally, this Wishart rolloff approach 
can be used to remove the effects of spatially autocorrelated noise and ringing from iteratively 
generated group PCA series57 (httpz://www.humanconnectome.org/documentation/mound-and-
moat-effect.html). Supplementary Fig. 7 illustrates both effects.  	
 
11. Improving Subcortical Alignment Using Diffusion Fiber Orientations 
 
One arena in which the current HCP Pipelines could likely be improved is in the alignment of the 
subcortical white matter, which is currently based only on T1w images that have relatively little 
contrast within white matter.  Much as areal-feature-based registration improves the alignment 
of cortical areas over and above using only folding patterns, using fiber orientation information 
to drive white matter tract alignment will provide the registration algorithm with more information 
about the identity of the fiber tracts being aligned.  Because of their low within white matter 
contrast, T1w images will only approximately align these tracts.  Future versions of the HCP 
Pipelines may integrate a diffusion fiber orientation-based nonlinear registration (e.g. http://dti-
tk.sourceforge.net/pmwiki/pmwiki.php?n=Main.HomePage)58,59. 
 
12. Effects of Thresholding on Reproducibility of Neuroimaging Results  
 
Two interrelated issues arise from the traditional use of statistical thresholding for display of 
neuroimaging results and identification of regions (which are often then converted to 3D 
standard space coordinates as the sole means of data sharing):   
 
(1) Statistical significance maps (e.g. Z or p maps) are affected by more than the measure of 
interest (e.g., %BOLD change or relative myelin content).  They also reflect an estimate of the 
error of the measurement.  While such maps are statistically interpretable as the likelihood that 
a finding differs from chance, and thus have a role for establishing statistically significant effects, 
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they are less biologically interpretable than maps of the original effect of interest.  For example, 
in data generated using modern multi-channel head coils, regions near the center of the brain 
have lower Z-statistic values owing to the higher amount of unstructured noise in those regions 
after correcting for the sensitivity profile of the head coil.  This will decrease Z-statistics even if 
the %BOLD change in a subcortical central region is the same as that in a cortical region.  Thus, 
when searching for biological boundaries in the data, one should arguably use maps of the 
effect of interest, rather than Z-statistic maps.  Further, biologically important boundaries in the 
data are likely to be identified most reliably by looking for large and rapid changes in the original 
effect of interest over a small spatial distance. Thus focusing on gradients (measures of spatial 
change) in modalities can be an effective way to identify biologically important boundaries in 
one’s data, as was done in the HCP’s recent multi-modal parcellation34.  Using such gradients 
may aid in comparing across studies to determine the overlap of results (i.e., do two studies 
activate or connect the same brain area, neighboring brain areas, or more distant brain areas). 
 
(2) Traditionally, statistical significance maps are thresholded (usually at p<0.05 after some 
method of multiple comparison correction), and the regions that are identified are generally 
represented by the stereotaxic coordinates of the spatial center of gravity.  Often the 
thresholded statistical maps are all that is provided in the published figures of a study, making it 
harder to identify the underlying patterns in the data (only the “peak” and “valley” blobs are 
identified).  One problem that could be caused by this approach is unintentionally hiding 
evidence of an artifactual pattern that is more obvious in the unthresholded data (e.g. after 
thresholding one might find a few blobs on gyri and sulci, but the unthresholded data might 
clearly have a gyral vs sulcal bias).  Another issue is that the location of the statistical threshold 
contour can vary much more across studies than the underlying maps of the effect of interest or 
their gradients (See Supplementary Fig. 8).  Relatively uninteresting differences in Z statistical 
maps can easily turn activations whose significance is right around the threshold value from 
being above threshold to below threshold and vice-versa as illustrated in the figure.  These 
differences include slight changes in the spatial distribution of the noise, slight errors in the 
measure of the effect of interest, or even something as simple as adding more subjects or fMRI 
timepoints.  When looking for cortical areal borders, the focus should be on where the effect of 
interest changes markedly across the cortical surface, not where the variance of non-interest 
changes.  Also, in the limit, given enough data in an individual subject or enough subjects, 
nearly the entire brain may have statistically significant activation and deactivation in a task 
fMRI study using even a very conservative statistical threshold, but this says little about the 
biological significance of this whole brain activation and deactivation60.  Thus, it is advantageous 
to use gradients in the maps of the effect of interest to delineate areal borders or regions of 
interest, rather than statistical thresholds.  Some of the spatial uncertainty present in the 
traditional neuroimaging analysis paradigm may reflect the use of statistical thresholding to 
define clusters from which 3D activation peaks, or centers of mass are computed (also, many of 
the widely used multiple comparison correction and statistical thresholding approaches have 
very inflated false positive rates61).  Thus, it would be helpful if the maps of the effect of interest, 
their gradients, and statistical significance maps were displayed in publications and uploaded to 
neuroimaging databases such as BALSA (see main text), OpenfMRI (https://openfmri.org), and 
NeuroVault (http://neurovault.org).  Finally, as noted in the main text tenet 6, parcellated 
analyses provide an excellent alternative approach that has greater sensitivity and power while 
avoiding many of these issues.   
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13. Group Average Registration Drift 
 
Group average registration drift is a phenomenon that occurs when registration templates are 
being generated with non-rigid registration algorithms or when different registration algorithms 
or templates are used to drive alignment to a common standard space.  A particularly striking 
example of drift is the ~37% increase in brain volume that occurs when one registers HCP study 
brains to the MNI152 template (see Supplementary Fig. 9), owing to a gradual expansion in the 
non-rigid components of the registration during the iterative process of template generation that 
was used to create the original MNI space62,63.  Drift can be removed by computing the group 
average registration effect and concatenating its inverse onto each individual subject’s 
registration.  It is both desirable and feasible to avoid such drifts in future brain templates.  If 
such drifts are eliminated64, very precise cross-study, cross-modal boundary comparisons can 
be made.  This is true even when using different areal features in different studies after a gentle 
folding-based registration to a common geographic template (see Supplementary Fig. 10), so 
long as the two studies’ samples are drawn from the same population.  Importantly, the current 
grayordinates space is still based on MNI space for subcortical structures and thus still has this 
drift embedded in it.  A future version of the CIFTI grayordinates space may eliminate this drift.   
 
14.  ‘Weighted’ Approaches to Parcellation 
 
Parcellation of the brain is often carried out by clustering together neighboring grayordinates on 
the basis of the similarity of their timeseries. This typically yields a large number of non-
overlapping parcels, with a single contiguous group of grayordinates in each parcel (or network 
node). This can be referred to as a “hard parcellation”65,66.  However the clustering does not 
have to be “hard”, but may instead be “fuzzy” or even probabilistic.  One approach to generating 
a “fuzzy parcellation” involves high-dimensional spatial independent-component analysis 
(ICA)67.  Using ICA, each network “node” is described by a spatial map of varying weights.  
Notably each map may overlap with other nodes’ maps and may include more than one set of 
contiguously neighbouring grayordinates.  Network edges (connections between nodes) are 
estimated by comparing the fMRI time series associated with the nodes (usually derived using 
multiple regression).  With any of these parcellation approaches, brain connectivity can be 
represented as a ‘parcellated connectome’, which can be visualized simply as an Nnodes x Nnodes 
network matrix or a graph (explicitly showing nodes and the strongest edges68) or using more 
sophisticated visualization approaches that embed nodes and edges into spatial representations 
of the brain69.  Hard parcellations have the advantage of being simpler representations and are 
therefore a more parsimonious yet accurate representation, if they are a good biological model 
of the data. They are also easier to interpret as distinct neuroanatomical entities.  On the other 
hand, soft parcellations may be useful where the biology does not fit the model of non-
overlapping spatial segregation or there is a premium on maximizing the homogeneity of signals 
within parcels.  Multiple regression using a weighted parcellation may be able to produce 
“purer,” more homogeneous timecourses when multiple neural signals are spatially 
superimposed (e.g. the distinct signals related to the eccentricity and polar angle axes of 
visuotopic organization in the visual cortex34).  Further, an ICA-based weighted parcellation by 
definition will not allow rank-deficient node-timeseries matrices to occur, whereas this condition 
can be a problem for partial correlation of hard parcellations (i.e. especially if a parcellation 
includes homotopically related parcels across the two hemispheres). 
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15. Current Limitations to Generating Human Connectomes Using Non-invasive Approaches 
 
The Human Connectome Project’s core goal is to create area-to-area connectivity matrices 
using diffusion tractography and functional connectivity.  While much progress has been made 
in this direction (in particular in defining the cortical areas to be connected34), much work 
remains to assess and maximize the accuracy of the non-invasive measures of brain 
connectivity by comparing them to invasive tracers in non-human primates.   
 
Despite its well documented capabilities for localizing major fiber tracts in the white matter (see 
below), using diffusion tractography to map connections between distant gray matter regions 
has several limitations and is a field of active research70-72. Some of the limitations are 
fundamental, whereas others are amenable to methodological advances. One fundamental 
limitation of diffusion tractography is that it is unable to provide accurate directionality 
information about connections (it is impossible to know if an estimated connection is A à B, A 
ß B, or A ßà B) because water diffusion in axons is bidirectional.  In contrast, invasive 
retrograde and anterograde tracers reveal the directionality of connections71,73.  Thus, 
directionality information would have to be inferred through some other means (indeed, this 
prospect was one reason that MEG was included as an imaging modality in the HCP).  Another 
problem is the indirect nature of the measurements: a mapping is necessary from 
measurements of bulk water diffusion displacements to axons and fiber patterns.  Due to the 
limited resolution of MRI (~mm3), hundreds of thousands of axons coexist in the same brain 
imaging voxel74, giving rise to different complex geometries (crossing, “kissing”, branching, 
fanning, converging). Distinguishing these configurations from the measured diffusion signal is 
an ill-posed problem in general.  For instance some axons in white matter branch by bifurcation 
at quasi-right angles75, making it difficult for tractography to distinguish axonal branching from 
crossing of independent fiber bundles. These issues can cause errors when tracking either deep 
in the white matter or close to the cortex.   
 
Current tractography paradigms are also challenged in reaching terminations within gray matter 
and in accurately tracking in the vicinity of the WM/GM boundary74,76,77.  There is a pronounced 
bias in tractography streamlines towards being higher on gyral crowns and much lower in sulci.  
When streamline density is normalized relative to flat regions (zero surface curvature in sulcal 
banks), it becomes clear that the bias is actually more of an anti-sulcal bias rather than as 
strong an increase in gyral connectivity.  Such biases are strongest when tractography 
streamlines return to the cortex from the deep white matter, and so they are most prevalent 
when seeding bidirectionally within the white matter (e.g. ‘matrix3’ in FSL’s probtrackx2 
tractography algorithm).  Pushing to higher resolution does help (as shown when fusing 3T and 
7T HCP dMRI data78), but does not fully address this issue (as shown with 250um isotropic 
resolution in post-mortem macaques77).  The problems arise because (i) near sulcal fundi, 
superficial white matter and deep grey matter are dominated by tangentially running “U-Fibers,” 
which direct streamlines around the sulci, rather than allowing them to penetrate the grey 
matter; and (ii) in ‘gyral blades’ (white matter lying between sulcal banks), fiber bundles are 
predominantly oriented towards gyral crowns. It is possible to predict components of a 
neuroanatomically reasonable gyral bias in the tractography using simple geometric 
models74,76,77 that assume that each cubic mm (or square mm of the cortical midthickness 
surface) should, to first order, send out and receive a comparable number of axons.  Thus gyral 
crowns should have somewhat more axons crossing their white matter surfaces and sulcal fundi 
somewhat less; however, the bias observed in tractography is frequently much higher74,76.  This 
geometric model can serve as a reference upon which tractographic model improvements can 
be objectively evaluated.   
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Concerns about the performance of tractography near the grey-white interface and the influence 
of folding patterns on the locations of gradients in tractographic connectivity led to tractography 
not being used as a modality in the HCP’s multi-modal parcellation of the cerebral cortex34.  
That said, it will be interesting to compare tractographic connectivity gradients to the multi-
modal consensus areal borders once large amounts of HCP tractographic data have been 
generated and shared.  Should tractography produce gradients that overlap substantially with 
the multi-modally defined cortical areal borders, tractography features could aid in predicting the 
locations of cortical areas in individual subjects using the multi-modal areal classifier34.  If 
tractography gradients do not have strong overlap with the multi-modal consensus areal 
borders, future improvements in tractographic models could be objectively evaluated with 
respect to these reference areal borders to aim for better agreement.   
 
Collectively, these issues give rise to significant challenges in keeping track of area-to-area 
connections as they travel from cortex through the deep white matter within fascicles and then 
fan out again to reach distant regions of cortex. To the extent that axons do not remain 
clustered together relative to the voxel size of the diffusion scan, these fascicles—which 
themselves have complex cross-sectional shapes—form bottlenecks where the accuracy of 
information about the strengths of inter-areal connections will be eroded.  If, on the one hand, 
fibers from one area tend to cluster together within the deep white matter and then fan out again 
when they reach cortex, this will relax the spatial resolution requirements needed to accurately 
reconstruct area-to-area pathways.  On the other hand, if axons relatively randomly distribute 
themselves within major fascicles, accurate reconstructions of area-to-area pathways would 
require dramatic improvements over current diffusion MRI spatial resolution.  Invasive tracer 
studies in non-human primates compared with tractography may help to resolve which reality 
predominates within the brain; though the plethora of studies that show agreement between 
tractography results and other modalities and in various contexts (see Ref. 71 for a review of 
such evidence) suggest that the geometrical realities may be somewhat on the favorable side.  
 
The above limitations in estimating direct connection strengths using tractography are difficult to 
fully address.  However, better data and better methods can help to reduce errors.  Work within 
the HCP consortium has aimed towards these goals18,19.  The HCP pushed the spatial 
resolution of dMRI to reduce partial volume effects, while keeping high SNR and high angular 
resolution.  At the same time, data at multiple angular contrasts (b values) have been sampled, 
which can further help in accurately mapping of fiber orientations79,80.  Up to three fiber 
crossings within the deep white matter, as well as various microstructural metrics,81-84 can be 
routinely modeled using the current HCP data releases.  New approaches for mapping 
connections are also being explored, including incorporation of fiber dispersion85 in tractography 
and neighbourhood-wise tracking86.  Better, neuroanatomically informed models of axonal 
trajectories near the cortical ribbon incorporated into tractography may help to reduce gyral and 
sulcal biases.  In Ref.87, the relationship of fiber orientations with cortical features is explored 
using post-mortem high-resolution histology and used to inform generative models for in-vivo 
diffusion MRI.  This work hopes to use mesoscale information to better estimate the paths of 
tractography at the transition between white and gray matter.  As improved tractography models 
aimed at measuring accurate area-to-area connection strengths emerge, results can be 
compared directly with invasive tracer studies in the macaque to see whether the modifications 
to the tractography models have improved the agreement between tracers and tractography76.   
 
Aside from the question of accurate area-to-area connections and connectomes, tractography 
can still provide useful information about the major fascicles themselves, for understanding how 
large territories of cortex are connected (e.g., refs. 88,89, for understanding how large fascicles 
have changed through evolution90,91, for understanding differences in fascicles in health and 
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disease, or for the purpose of surgical planning.  Thus, even without yet having a fully accurate 
and validated area-to-area structural connectome, investigators are able to see how large 
ensembles of brain regions are connected to one another and to investigate white matter 
microstructural changes along these fascicles.   
 
A different set of limitations affect functional connectivity measures. Obtaining connectivity 
estimates using statistical dependences of the time-varying BOLD signal is also a very indirect 
method and has its own caveats.  Functional connectivity can be strong between parts of cortex 
that are known not to be directly connected (e.g., the horizontal meridian representations in V1 
across hemispheres92).  Thus, functional connectivity reflects both direct and indirect 
connections, likely including common inputs.  One approach that attempts to make functional 
connectivity more direct is partial correlation functional connectivity.  This multi-variate approach 
attempts to identify the unique pairwise statistical influences between cortical areas.  Such 
analyses are very demanding in terms of the number of timepoints and data quality required to 
produce meaningful data, and might not behave optimally in the context of neuroanatomical 
parcellations (as opposed to the ICA-based parcellations mentioned in Note #14).  Estimating 
reliable directionality information from rfMRI timeseries is also problematic, partly because of the 
temporal smoothing of the BOLD response function, although causal inference methods not 
based on temporal lag are being developed and evaluated for rfMRI data (e.g., see references 
and discussions in Ref.93).  Another conceptual limitation, raised in Ref.71 involves an area that 
participates in many resting state networks and as a result integrates many competing signals.  
Such an area might actually appear less connected than other areas, and a graph theoretic 
analysis searching for hubs might overlook it94.   
 
Significant progress had been made, in part by the HCP consortium, on how to correct for the 
temporal fluctuations induced by subject movement (main text and Note #9).  That said, as 
discussed in Box 1 and Note #9, standard full correlation-based functional connectivity has a 
global signal/global noise problem (as opposed to partial correlation, which is largely immune) 
that has been much debated in the literature.  This problem will need to be solved before full 
correlation functional connectivity provides an unbiased measure for assessing differences 
between groups with differing amounts of global noise (fortunately, global noise, by virtue of its 
global nature, does not affect the locations of gradients).  All these functional connectivity 
approaches (full correlation, partial correlation, attempts at directional correlation) would benefit 
from comparison with invasive tracer data from non-human primates, just as tractography has 
done, for validation and to improve their accuracy at representing brain connectivity.  Such a 
framework, just like for tractography, could aid in making decisions about processing and 
modeling strategies for the generation of more accurate non-invasive human functional 
connectomes.  
 
16.  The ‘Standard’ Individual Lab’s Study in the HCP-Style Paradigm 
 
The HCP-Style neuroimaging paradigm includes a set of standard, concrete recommendations 
that are applicable to many if not most human neuroimaging studies (i.e., what is desirable for 
investigators to do in the absence of a good reason to do something different):   
 
Acquisition: A standard study should acquire 3D T1w and T2w structural images on a 3T 
scanner with a multi-channel head coil (ideally 32 or more receive channels) with 0.8 mm 
isotropic resolution or better (half the minimum thickness of the cerebral cortex), which can be 
acquired in ~13 minutes.  (3T is currently the most mature platform that produces higher SNR 
than 1.5T, and the Siemens Prisma scanner is farthest along with the necessary technology and 
stability).  Functional MRI data should be acquired using task and/or resting state paradigms 
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according to the purpose of the study.  The functional MRI data are acquired with whole-brain 
isotropic spatial resolution of 2.5 mm or better (less than the 2.6mm mean thickness of the 
cerebral cortex) and a TR of 1 second or less.  As much fMRI data is acquired as is feasible 
(ideally 1 hour or more, and at least 30 min is strongly recommended32).  A phase-reversed pair 
of spin echo images is acquired with the same geometry and echo spacing as the fMRI data in 
about 1 minute (for mapping the b0 distortion field and the fMRI receive intensity bias field).  If 
diffusion imaging is a part of the study, it should be acquired using a monopolar diffusion 
encoding scheme with whole brain coverage and with as high spatial resolution (i.e. less than 2 
mm isotropic), as many directions (more than 60 for high angular resolution), and as high a b-
value (ideally more than b=1000 s/mm2, and multiple shells are also generally helpful), as is 
feasible for the scanner being used.  At a minimum, phase reversed b0s should be acquired and 
as many unique directions as possible (rather than repeating directions for averaging).  Ideally 
phase-reversed averages are obtained if there is time to acquire hundreds of directions as in the 
main HCP.  Both the fMRI and diffusion MRI data must be acquired using a multi-band EPI 
sequence to maximize SNR efficiency and to reach the targets for spatial resolution, temporal 
resolution, and angular resolution.   
 
Preprocessing:  The HCP’s minimal preprocessing pipelines, or alternatives with demonstrably 
superior capabilities, should be used to remove all image distortions, remove the spatial effects 
of subject motion, align data across modalities, and generate individual subject cortical 
surfaces, subcortical segmentations, and myelin and thickness maps.  Structured temporal 
noise is removed from fMRI data using ICA+FIX or a similar approach and it is removed from 
DWI data using the outlier modeling available in FSL’s ‘eddy’ or a similar approach.  Cortical 
data are registered on the surface using MSMAll or a similar areal-feature-based approach to 
maximize alignment of cortical areas across subjects and, if the study is creating its own areal-
feature-based registration template, group registration drift relative to a gentle folding-based 
geographic registration is removed to enable comparison with other studies that use differing 
areal features.  Volume data are registered using a nonlinear volume registration approach 
(perhaps in the future based on fiber orientation information if diffusion data has been acquired, 
but currently based on the T1w image).  CIFTI files are created as the final outputs of these 
registrations in the 2mm standard grayordinates space.  Spatial and temporal smoothing are 
avoided as a rule (unless specific study goals require it, e.g. matching the spatial resolution 
between fMRI and a grid of ECOG electrodes), and unstructured noise is reduced using 
parcellation or an approach like the Wishart rolloff method in Note #10.  Parcellation is done 
using a neuroanatomical parcellation that reflects the structural and functional organization of 
the brain (e.g. the HCP’s multi-modal parcellation) and is based on accurately aligned data of 
hundreds of subjects.  If greater accuracy is desired, individual subject parcellations can also be 
created using a previously trained cortical areal classifier (so far this has been tested on 1 hour 
of resting state fMRI data, but in principle other kinds of fMRI data should also work, though the 
minimum amount of data needed has not yet been established).   
 
Analysis:  Analyses of fine spatial patterns are carried out on the dense (grayordinate-wise) 
CIFTI files, however statistical analyses of whole brain, area-level patterns are carried out on 
parcellated CIFTI files to benefit from gains in sensitivity and power.  Statistical comparisons 
across the whole brain are thus carried out on parcellated data, whereas finer comparisons 
might be carried out only within predefined brain areas.  Obviously there are a very large 
number of analyses that could arise from HCP-Style studies, including those that wish to go 
beyond areal-feature-based registration to establish non-spatial correspondences across 
subjects such as those in hyperalignment95.  The critical features of an HCP-Style analysis 
relate to the neuroanatomical fidelity of the spatial localization at the areal level and the use of 
neuroanatomy in addition to statistics to validate and describe the results.   
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Data Sharing:  Results are visualized on surfaces for the cerebral cortex and in volume slices 
for subcortical nuclei.  If thresholded statistical maps are generated, unthresholded versions of 
the effect of interest are also made available.  When appropriate, figures of brain images are 
created directly in Connectome Workbench or another neuroimaging software with equivalent 
features for figure creation, and these figures are saved as “scenes” which link the data to the 
figure along with any annotations of the figure.  These scenes are linked within the resulting 
publication using unique identifying URLs and the scenes are uploaded to a neuroimaging 
database so that they and their data are available for download by other investigators.  This will 
allow users access to the brain maps of published figures to facilitate direct cross-study 
comparisons.  Any customized analysis code is uploaded to a code sharing service (e.g., 
GitHub) and also shared with readers.   
 
17. Can’t I Just Map between the Group Average Surface and Group Average Volume MNI 
Space? 
 
A frequent question on the HCP-Users mailing list concerns how to compare group average or 
atlas data in MNI space to data within the standard CIFTI grayordinates space (91282 
grayordinates, 2mm spacing).  Although it is possible to compare group average or atlas data in 
the standard grayordinate space to an individual subject’s physical volume space (by using the 
MSMAll registered individual surfaces to form a cortical ribbon in the subject’s physical volume 
space and projecting the data into this ribbon), there exists no method to bring data from a 
group average surface into group average MNI volume space that maintains the spatial 
localization accuracy of the HCP-style neuroimaging paradigm.  Insofar as a particular cortical 
region has a consistent folding pattern across subjects and these folds have a consistent 
relationship with cortical areas, the decrease in accuracy is smaller, but this condition holds only 
for a minority of cortical regions (e.g., the central sulcus, the calcarine sulcus, and the insula).  
Even in these regions, there is a substantial amount of degradation in spatial localization 
precision in the volume (e.g., V1 in Ref.96), and inaccuracy in mapping to a group average 
cortical surface (e.g., area 2 in Ref.97).  This makes neuroanatomically valid comparisons 
between group average data in MNI volume space and group average data on the surface 
inherently challenging7.   
 
The problem manifests itself most strikingly when comparing data mapped to group average 
cortical surfaces (where matching between vertices is derived from areal feature-based 
registration) to data mapped to average structural images registered in the volume using 
nonlinear volume registration (in this case FNIRT, as in Ref.17).  Supplementary Fig. 12 shows 
the issue in a comparison between group average and individual data.  In most cortical regions, 
group average surfaces and curvature maps are much blurrier than individual subject surfaces 
and curvature maps.  The only exceptions are regions where there is strong consistency in 
folding patterns across subjects and between cortical areas and folds96, such as the central 
sulcus, the calcarine sulcus, and the insula.  This has an important impact on the group average 
surface contour, which shrinks from the geometric effects of averaging.  This shrinkage can be 
approximately corrected for on the surface when performing computations on group average 
surfaces (e.g., computing gradients or resampling data) by also making use of group average 
vertex areas across the individual subjects’ midthickness surfaces in their native physical 
volume spaces.  This surface shrinkage makes mapping to or from group average surfaces into 
group average volume space (e.g., MNI standard space) highly problematic, as the surfaces will 
shrink and miss large portions of grey matter.  To compare group average data from two studies 
while maintaining the neuroanatomical fidelity of the HCP-style paradigm, it is necessary to 
process both studies using the HCP-style neuroimaging analysis approach.  This means cortical 
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atlases should be surface-based and any averaging across subjects should occur on the 
surface after areal features have been aligned.  Another approach, generating a surface from a 
group average volume template and registering it to a surface template using folding patterns, 
may avoid the shrinkage issue98,99; however, surfaces previously produced using this approach 
are of poorer quality than individual subject surfaces owing to the blurring from tissue partial 
voluming effects on the volume template from inadequate cross-subject cortical alignment.  
There is also no guarantee that cortical areas will be aligned across templates, and the volume-
based cortical data of interest will still be poorly aligned.   
 
18. How can I compare surface-based data generated on other platforms to the HCP_MMP1.0 
parcellation and other group average surface data?  
 
Many investigators have carried out surface-based analyses using atlases and platforms other 
than fs_LR97 and Connectome Workbench, but may be interested in comparing their results to 
HCP group average data, particularly the HCP_MMP1.0 cortical parcellation.  This requires a 
mapping between the surfaces (individual or group average) on which the investigator’s analysis 
has been carried out and the HCP group average surface mesh.  The HCP_MMP1.0 
parcellation and most other HCP group average datasets are represented on the ‘32k_fs_LR’ 
mesh (32,492 vertices per hemisphere, with a 2 mm average vertex spacing on the 
midthickness surface).  This mesh has good geographic correspondence between the left and 
right hemisphere surfaces as a result of landmark-constrained interhemispheric registration 
between the left and right hemispheres (fs_L and fs_R) of FreeSurfer’s fsaverage atlas 
surface97.  For datasets analyzed in FreeSurfer, data from the fsaverage atlas surfaces can be 
mapped to the 32k_fs_LR mesh by resampling from the registered fsaverage atlas spherical 
surface to the 32k_fs_LR atlas surface (see 
https://wiki.humanconnectome.org/display/PublicData/HCP+Users+FAQ; entry #9 – “How do I 
map data between FreeSurfer (native or fsaverage mesh) and HCP’s fs_LR mesh?”)97.  
Conversely, data on the 32k_fs_LR mesh can be mapped onto FreeSurfer surfaces by 
reversing the order of files called in the resampling command.  In general, we encourage 
investigators to map data onto the 32k_fs_LR mesh (the correspondence between left and right 
hemispheres is useful in a variety of contexts), but recognize there may be project-specific 
reasons for mapping in the reverse direction. For investigators using other surface-based 
analysis platforms (e.g., SUMA, BrainVoyager, or BrainVisa), analogous inter-atlas 
transformations have yet to be generated but such methods will be posted to the HCP-Users 
FAQ if and when they are implemented.   
 
	
	
	
	
	
	
	
	
	
	
	
	
	



	 18	

II.	Supplementary	References	
	
1	 Mugler,	J.	P.,	3rd	&	Brookeman,	J.	R.	Three-dimensional	magnetization-prepared	

rapid	gradient-echo	imaging	(3D	MP	RAGE).	Magnetic	resonance	in	medicine	15,	
152-157	(1990).	

2	 Mugler,	J.	P.,	3rd	et	al.	Optimized	single-slab	three-dimensional	spin-echo	MR	
imaging	of	the	brain.	Radiology	216,	891-899,	
doi:10.1148/radiology.216.3.r00au46891	(2000).	

3	 Van	de	Moortele,	P.	F.	et	al.	T1	weighted	brain	images	at	7	Tesla	unbiased	for	Proton	
Density,	T2*	contrast	and	RF	coil	receive	B1	sensitivity	with	simultaneous	vessel	
visualization.	NeuroImage	46,	432-446,	doi:10.1016/j.neuroimage.2009.02.009	
(2009).	

4	 Mugler,	J.	P.,	3rd.	Optimized	three-dimensional	fast-spin-echo	MRI.	Journal	of	
magnetic	resonance	imaging	:	JMRI	39,	745-767,	doi:10.1002/jmri.24542	(2014).	

5	 Busse,	R.	F.,	Hariharan,	H.,	Vu,	A.	&	Brittain,	J.	H.	Fast	spin	echo	sequences	with	very	
long	echo	trains:	design	of	variable	refocusing	flip	angle	schedules	and	generation	of	
clinical	T2	contrast.	Magnetic	resonance	in	medicine	55,	1030-1037,	
doi:10.1002/mrm.20863	(2006).	

6	 Park,	J.,	Mugler,	J.	P.,	3rd,	Horger,	W.	&	Kiefer,	B.	Optimized	T1-weighted	contrast	for	
single-slab	3D	turbo	spin-echo	imaging	with	long	echo	trains:	application	to	whole-
brain	imaging.	Magnetic	resonance	in	medicine	58,	982-992,	
doi:10.1002/mrm.21386	(2007).	

7	 Glasser,	M.	F.	&	Van	Essen,	D.	C.	Mapping	human	cortical	areas	in	vivo	based	on	
myelin	content	as	revealed	by	T1-	and	T2-weighted	MRI.	The	Journal	of	neuroscience	
:	the	official	journal	of	the	Society	for	Neuroscience	31,	11597-11616,	
doi:10.1523/JNEUROSCI.2180-11.2011	(2011).	

8	 Stuber,	C.	et	al.	Myelin	and	iron	concentration	in	the	human	brain:	a	quantitative	
study	of	MRI	contrast.	NeuroImage	93	Pt	1,	95-106,	
doi:10.1016/j.neuroimage.2014.02.026	(2014).	

9	 Fukunaga,	M.	et	al.	Layer-specific	variation	of	iron	content	in	cerebral	cortex	as	a	
source	of	MRI	contrast.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	
States	of	America	107,	3834-3839,	doi:10.1073/pnas.0911177107	(2010).	

10	 Weiskopf,	N.	et	al.	Quantitative	multi-parameter	mapping	of	R1,	PD(*),	MT,	and	
R2(*)	at	3T:	a	multi-center	validation.	Frontiers	in	neuroscience	7,	95,	
doi:10.3389/fnins.2013.00095	(2013).	

11	 Dick,	F.	et	al.	In	vivo	functional	and	myeloarchitectonic	mapping	of	human	primary	
auditory	areas.	The	Journal	of	Neuroscience	32,	16095-16105	(2012).	

12	 Geyer,	S.,	Weiss,	M.,	Reimann,	K.,	Lohmann,	G.	&	Turner,	R.	Microstructural	
parcellation	of	the	human	cerebral	cortex–from	Brodmann's	post-mortem	map	to	in	
vivo	mapping	with	high-field	magnetic	resonance	imaging.	Frontiers	in	human	
neuroscience	5,	19	(2011).	

13	 Lutti,	A.,	Dick,	F.,	Sereno,	M.	I.	&	Weiskopf,	N.	Using	high-resolution	quantitative	
mapping	of	R1	as	an	index	of	cortical	myelination.	NeuroImage	93,	176-188	(2014).	

14	 Sereno,	M.	I.,	Lutti,	A.,	Weiskopf,	N.	&	Dick,	F.	Mapping	the	human	cortical	surface	by	
combining	quantitative	T1	with	retinotopy.	Cerebral	Cortex	23,	2261-2268	(2013).	



	 19	

15	 Cohen-Adad,	J.	et	al.	T	2*	mapping	and	B	0	orientation-dependence	at	7T	reveal	
cyto-and	myeloarchitecture	organization	of	the	human	cortex.	NeuroImage	60,	
1006-1014	(2012).	

16	 De	Martino,	F.	et	al.	High-resolution	mapping	of	myeloarchitecture	in	vivo:	
localization	of	auditory	areas	in	the	human	brain.	Cerebral	Cortex	25,	3394-3405	
(2015).	

17	 Glasser,	M.	F.	et	al.	The	minimal	preprocessing	pipelines	for	the	Human	Connectome	
Project.	NeuroImage	80,	105-124,	doi:10.1016/j.neuroimage.2013.04.127	(2013).	

18	 Sotiropoulos,	S.	N.	et	al.	Advances	in	diffusion	MRI	acquisition	and	processing	in	the	
Human	Connectome	Project.	NeuroImage	80,	125-143,	
doi:10.1016/j.neuroimage.2013.05.057	(2013).	

19	 Vu,	A.	T.	et	al.	High	resolution	whole	brain	diffusion	imaging	at	7T	for	the	Human	
Connectome	Project.	NeuroImage	122,	318-331,	
doi:10.1016/j.neuroimage.2015.08.004	(2015).	

20	 Setsompop,	K.	et	al.	Pushing	the	limits	of	in	vivo	diffusion	MRI	for	the	Human	
Connectome	Project.	NeuroImage	80,	220-233,	
doi:10.1016/j.neuroimage.2013.05.078	(2013).	

21	 Stejskal,	E.	O.	&	Tanner,	J.	E.	Diffusion	measurements:	Spin	echoes	in	the	presence	of	
a	time-dependent	field	gradient.	J.	Chem.	Phys.	42,	288	(1965).	

22	 Reese,	T.	G.,	Heid,	O.,	Weisskoff,	R.	M.	&	Wedeen,	V.	J.	Reduction	of	eddy-current-
induced	distortion	in	diffusion	MRI	using	a	twice-refocused	spin	echo.	Magnetic	
resonance	in	medicine	49,	177-182,	doi:10.1002/mrm.10308	(2003).	

23	 Andersson,	J.	L.	&	Sotiropoulos,	S.	N.	An	integrated	approach	to	correction	for	off-
resonance	effects	and	subject	movement	in	diffusion	MR	imaging.	NeuroImage	125,	
1063-1078,	doi:10.1016/j.neuroimage.2015.10.019	(2016).	

24	 Andersson,	J.	L.	&	Skare,	S.	A	model-based	method	for	retrospective	correction	of	
geometric	distortions	in	diffusion-weighted	EPI.	NeuroImage	16,	177-199,	
doi:10.1006/nimg.2001.1039	(2002).	

25	 Moeller,	S.	et	al.	Multiband	multislice	GE-EPI	at	7	tesla,	with	16-fold	acceleration	
using	partial	parallel	imaging	with	application	to	high	spatial	and	temporal	whole-
brain	fMRI.	Magnetic	resonance	in	medicine	63,	1144-1153,	
doi:10.1002/mrm.22361	(2010).	

26	 Setsompop,	K.	et	al.	Improving	diffusion	MRI	using	simultaneous	multi-slice	echo	
planar	imaging.	NeuroImage	63,	569-580,	doi:10.1016/j.neuroimage.2012.06.033	
(2012).	

27	 Smith,	S.	M.	et	al.	Resting-state	fMRI	in	the	Human	Connectome	Project.	NeuroImage	
80,	144-168,	doi:10.1016/j.neuroimage.2013.05.039	(2013).	

28	 Auerbach,	E.	J.,	Xu,	J.,	Yacoub,	E.,	Moeller,	S.	&	Ugurbil,	K.	Multiband	accelerated	spin-
echo	echo	planar	imaging	with	reduced	peak	RF	power	using	time-shifted	RF	pulses.	
Magnetic	resonance	in	medicine	69,	1261-1267,	doi:10.1002/mrm.24719	(2013).	

29	 Ugurbil,	K.	et	al.	Pushing	spatial	and	temporal	resolution	for	functional	and	diffusion	
MRI	in	the	Human	Connectome	Project.	NeuroImage	80,	80-104,	
doi:10.1016/j.neuroimage.2013.05.012	(2013).	

30	 Tisdall,	M.	D.	et	al.	Volumetric	navigators	for	prospective	motion	correction	and	
selective	reacquisition	in	neuroanatomical	MRI.	Magnetic	resonance	in	medicine	68,	
389-399,	doi:10.1002/mrm.23228	(2012).	



	 20	

31	 Tisdall,	M.	D.	et	al.	Prospective	motion	correction	with	volumetric	navigators	
(vNavs)	reduces	the	bias	and	variance	in	brain	morphometry	induced	by	subject	
motion.	NeuroImage	127,	11-22,	doi:10.1016/j.neuroimage.2015.11.054	(2016).	

32	 Laumann,	T.	O.	et	al.	Functional	System	and	Areal	Organization	of	a	Highly	Sampled	
Individual	Human	Brain.	Neuron	87,	657-670,	doi:10.1016/j.neuron.2015.06.037	
(2015).	

33	 Cole,	M.	W.,	Bassett,	D.	S.,	Power,	J.	D.,	Braver,	T.	S.	&	Petersen,	S.	E.	Intrinsic	and	
task-evoked	network	architectures	of	the	human	brain.	Neuron	83,	238-251,	
doi:10.1016/j.neuron.2014.05.014	(2014).	

34	 Glasser,	M.	F.	et	al.	A	multi-modal	parcellation	of	human	cerebral	cortex.	Nature,	
doi:doi	10.1038/nature18933	(2016).	

35	 Wu,	X.	et	al.	Simultaneous	multislice	multiband	parallel	radiofrequency	excitation	
with	independent	slice-specific	transmit	B1	homogenization.	Magnetic	resonance	in	
medicine	70,	630-638,	doi:10.1002/mrm.24828	(2013).	

36	 Wu,	X.,	Schmitter,	S.,	Ugurbil,	K.	&	Van	de	Moortele,	P.-F.	Slab-wise	parallel	transmit	
multiband	RF	pulse	design	for	simultaneous	multislice	imaging	with	volumetric	
coverage.	Proc	Int	Soc	Mag	Reson	Med	22,	4333	(2014).	

37	 Jann,	K.	et	al.	Functional	connectivity	in	BOLD	and	CBF	data:	similarity	and	
reliability	of	resting	brain	networks.	NeuroImage	106,	111-122,	
doi:10.1016/j.neuroimage.2014.11.028	(2015).	

38	 Li,	X.	et	al.	Theoretical	and	experimental	evaluation	of	multi-band	EPI	for	high-
resolution	whole	brain	pCASL	Imaging.	NeuroImage	106,	170-181,	
doi:10.1016/j.neuroimage.2014.10.029	(2015).	

39	 White,	N.	et	al.	PROMO:	Real-time	prospective	motion	correction	in	MRI	using	
image-based	tracking.	Magnetic	resonance	in	medicine	63,	91-105,	
doi:10.1002/mrm.22176	(2010).	

40	 Bammer,	R.	et	al.	Analysis	and	generalized	correction	of	the	effect	of	spatial	gradient	
field	distortions	in	diffusion-weighted	imaging.	Magnetic	resonance	in	medicine	50,	
560-569,	doi:10.1002/mrm.10545	(2003).	

41	 Greve,	D.	N.	&	Fischl,	B.	Accurate	and	robust	brain	image	alignment	using	boundary-
based	registration.	NeuroImage	48,	63-72,	doi:10.1016/j.neuroimage.2009.06.060	
(2009).	

42	 Andersson,	J.	L.	&	Sotiropoulos,	S.	N.	Non-parametric	representation	and	prediction	
of	single-	and	multi-shell	diffusion-weighted	MRI	data	using	Gaussian	processes.	
NeuroImage	122,	166-176,	doi:10.1016/j.neuroimage.2015.07.067	(2015).	

43	 Andersson,	J.	L.	R.,	Graham,	M.	S.,	Zsoldos,	E.	&	Sotiropoulos,	S.	N.	Incorporating	
outlier	detection	and	replacement	into	a	non-parameteric	framework	for	movement	
and	distortion	correction	of	diffusion	MR	images.	Neuroimage	(in	review)	(2016).	

44	 Power,	J.	D.	et	al.	Methods	to	detect,	characterize,	and	remove	motion	artifact	in	
resting	state	fMRI.	NeuroImage	84,	320-341,	doi:10.1016/j.neuroimage.2013.08.048	
(2014).	

45	 Power,	J.	D.,	Schlaggar,	B.	L.	&	Petersen,	S.	E.	Recent	progress	and	outstanding	issues	
in	motion	correction	in	resting	state	fMRI.	NeuroImage	105,	536-551,	
doi:10.1016/j.neuroimage.2014.10.044	(2015).	



	 21	

46	 Satterthwaite,	T.	D.	et	al.	Impact	of	in-scanner	head	motion	on	multiple	measures	of	
functional	connectivity:	relevance	for	studies	of	neurodevelopment	in	youth.	
NeuroImage	60,	623-632,	doi:10.1016/j.neuroimage.2011.12.063	(2012).	

47	 Brooks,	J.	C.	et	al.	Physiological	noise	modelling	for	spinal	functional	magnetic	
resonance	imaging	studies.	NeuroImage	39,	680-692,	
doi:10.1016/j.neuroimage.2007.09.018	(2008).	

48	 Salimi-Khorshidi,	G.	et	al.	Automatic	denoising	of	functional	MRI	data:	combining	
independent	component	analysis	and	hierarchical	fusion	of	classifiers.	NeuroImage	
90,	449-468,	doi:10.1016/j.neuroimage.2013.11.046	(2014).	

49	 Griffanti,	L.	et	al.	ICA-based	artefact	removal	and	accelerated	fMRI	acquisition	for	
improved	resting	state	network	imaging.	NeuroImage	95,	232-247,	
doi:10.1016/j.neuroimage.2014.03.034	(2014).	

50	 Pruim,	R.	H.,	Mennes,	M.,	Buitelaar,	J.	K.	&	Beckmann,	C.	F.	Evaluation	of	ICA-AROMA	
and	alternative	strategies	for	motion	artifact	removal	in	resting	state	fMRI.	
NeuroImage	112,	278-287,	doi:10.1016/j.neuroimage.2015.02.063	(2015).	

51	 Pruim,	R.	H.	et	al.	ICA-AROMA:	A	robust	ICA-based	strategy	for	removing	motion	
artifacts	from	fMRI	data.	NeuroImage	112,	267-277,	
doi:10.1016/j.neuroimage.2015.02.064	(2015).	

52	 Kundu,	P.	et	al.	Integrated	strategy	for	improving	functional	connectivity	mapping	
using	multiecho	fMRI.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	
States	of	America	110,	16187-16192,	doi:10.1073/pnas.1301725110	(2013).	

53	 Kundu,	P.,	Inati,	S.	J.,	Evans,	J.	W.,	Luh,	W.	M.	&	Bandettini,	P.	A.	Differentiating	BOLD	
and	non-BOLD	signals	in	fMRI	time	series	using	multi-echo	EPI.	NeuroImage	60,	
1759-1770,	doi:10.1016/j.neuroimage.2011.12.028	(2012).	

54	 Chen,	J.	E.	&	Glover,	G.	H.	BOLD	fractional	contribution	to	resting-state	functional	
connectivity	above	0.1	Hz.	NeuroImage	107,	207-218,	
doi:10.1016/j.neuroimage.2014.12.012	(2015).	

55	 Niazy,	R.	K.,	Xie,	J.,	Miller,	K.,	Beckmann,	C.	F.	&	Smith,	S.	M.	Spectral	characteristics	of	
resting	state	networks.	Progress	in	brain	research	193,	259-276,	doi:10.1016/B978-
0-444-53839-0.00017-X	(2011).	

56	 Wishart,	J.	The	generalizeed	product	moment	distribution	in	samples	from	a	normal	
multivariate	population.	Biometrika	20A,	32-52	(1928).	

57	 Smith,	S.	M.,	Hyvarinen,	A.,	Varoquaux,	G.,	Miller,	K.	L.	&	Beckmann,	C.	F.	Group-PCA	
for	very	large	fMRI	datasets.	NeuroImage	101,	738-749,	
doi:10.1016/j.neuroimage.2014.07.051	(2014).	

58	 Zhang,	H.	et	al.	High-dimensional	spatial	normalization	of	diffusion	tensor	images	
improves	the	detection	of	white	matter	differences:	an	example	study	using	
amyotrophic	lateral	sclerosis.	IEEE	transactions	on	medical	imaging	26,	1585-1597,	
doi:10.1109/TMI.2007.906784	(2007).	

59	 Zhang,	H.,	Yushkevich,	P.	A.,	Alexander,	D.	C.	&	Gee,	J.	C.	Deformable	registration	of	
diffusion	tensor	MR	images	with	explicit	orientation	optimization.	Medical	image	
analysis	10,	764-785,	doi:10.1016/j.media.2006.06.004	(2006).	

60	 Gonzalez-Castillo,	J.	et	al.	Whole-brain,	time-locked	activation	with	simple	tasks	
revealed	using	massive	averaging	and	model-free	analysis.	Proceedings	of	the	
National	Academy	of	Sciences	of	the	United	States	of	America	109,	5487-5492,	
doi:10.1073/pnas.1121049109	(2012).	



	 22	

61	 Eklund,	A.,	Nichols,	T.	E.	&	Knutsson,	H.	Cluster	failure:	Why	fMRI	inferences	for	
spatial	extent	have	inflated	false-positive	rates.	Proceedings	of	the	National	Academy	
of	Sciences,	201602413	(2016).	

62	 Evans,	A.	C.	et	al.	3D	statistical	neuroanatomical	models	from	305	MRI	volumes.	Proc	
IEEE-Nuclear	Science	Symp	and	Med	Imag	Conf	(1993).	

63	 Mazziotta,	J.	et	al.	A	probabilistic	atlas	and	reference	system	for	the	human	brain:	
International	Consortium	for	Brain	Mapping	(ICBM).	Philosophical	transactions	of	
the	Royal	Society	of	London.	Series	B,	Biological	sciences	356,	1293-1322,	
doi:10.1098/rstb.2001.0915	(2001).	

64	 Abdollahi,	R.	O.	et	al.	Correspondences	between	retinotopic	areas	and	myelin	maps	
in	human	visual	cortex.	NeuroImage	99,	509-524,	
doi:10.1016/j.neuroimage.2014.06.042	(2014).	

65	 Blumensath,	T.	et	al.	Spatially	constrained	hierarchical	parcellation	of	the	brain	with	
resting-state	fMRI.	NeuroImage	76,	313-324,	
doi:10.1016/j.neuroimage.2013.03.024	(2013).	

66	 de	Reus,	M.	A.	&	van	den	Heuvel,	M.	P.	The	parcellation-based	connectome:	
limitations	and	extensions.	NeuroImage	80,	397-404,	
doi:10.1016/j.neuroimage.2013.03.053	(2013).	

67	 Beckmann,	C.	F.	Modelling	with	independent	components.	NeuroImage	62,	891-901,	
doi:10.1016/j.neuroimage.2012.02.020	(2012).	

68	 Smith,	S.	M.	et	al.	Functional	connectomics	from	resting-state	fMRI.	Trends	in	
cognitive	sciences	17,	666-682	(2013).	

69	 Margulies,	D.	S.,	Böttger,	J.,	Watanabe,	A.	&	Gorgolewski,	K.	J.	Visualizing	the	human	
connectome.	NeuroImage	80,	445-461	(2013).	

70	 Jbabdi,	S.	&	Johansen-Berg,	H.	Tractography:	where	do	we	go	from	here?	Brain	
connectivity	1,	169-183,	doi:10.1089/brain.2011.0033	(2011).	

71	 Jbabdi,	S.,	Sotiropoulos,	S.	N.,	Haber,	S.	N.,	Van	Essen,	D.	C.	&	Behrens,	T.	E.	Measuring	
macroscopic	brain	connections	in	vivo.	Nature	neuroscience	18,	1546-1555,	
doi:10.1038/nn.4134	(2015).	

72	 Tournier,	J.	D.,	Mori,	S.	&	Leemans,	A.	Diffusion	tensor	imaging	and	beyond.	Magnetic	
resonance	in	medicine	65,	1532-1556,	doi:10.1002/mrm.22924	(2011).	

73	 Markov,	N.	T.	et	al.	A	weighted	and	directed	interareal	connectivity	matrix	for	
macaque	cerebral	cortex.	Cereb	Cortex	24,	17-36,	doi:10.1093/cercor/bhs270	
(2014).	

74	 Van	Essen,	D.	et	al.	Mapping	connections	in	humans	and	non-human	primates:	
Aspirations	and	challenges	for	diffusion.	Diffusion	MRI,	2nd	Ed,	pp.	337-358,	New	
York;	Elsevier	(2014).	

	75	 Economo,	M.	N.	et	al.	A	platform	for	brain-wide	imaging	and	reconstruction	of	
individual	neurons.	eLife	5,	e10566,	doi:10.7554/eLife.10566	(2016).	

76	 Donahue,	C.	et	al.	Using	diffusion	tractography	to	predict	cortical	connection	
strength	and	distance:	A	quantitative	comparison	with	tracers	in	the	monkey.	
Neuroimage.	2016.	pii:	S1053-8119(16)30035-0.	doi:	
10.1016/j.neuroimage.2016.04.002.	[Epub	ahead	of	print]	(2016).	

77	 Reveley,	C.	et	al.	Superficial	white	matter	fiber	systems	impede	detection	of	long-
range	cortical	connections	in	diffusion	MR	tractography.	Proceedings	of	the	National	



	 23	

Academy	of	Sciences	of	the	United	States	of	America	112,	E2820-2828,	
doi:10.1073/pnas.1418198112	(2015).	

78	 Sotiropoulos,	S.	N.	et	al.	Fusion	in	diffusion	MRI	for	improved	fibre	orientation	
estimation:	An	application	to	the	3T	and	7T	data	of	the	human	connectome	project.	
NeuroImage	134,	396-409,	doi:10.1016/j.neuroimage.2016.04.014	(2016).	

79	 Jbabdi,	S.,	Sotiropoulos,	S.	N.,	Savio,	A.	M.,	Grana,	M.	&	Behrens,	T.	E.	Model-based	
analysis	of	multishell	diffusion	MR	data	for	tractography:	how	to	get	over	fitting	
problems.	Magnetic	resonance	in	medicine	68,	1846-1855,	doi:10.1002/mrm.24204	
(2012).	

80	 Jeurissen,	B.,	Tournier,	J.	D.,	Dhollander,	T.,	Connelly,	A.	&	Sijbers,	J.	Multi-tissue	
constrained	spherical	deconvolution	for	improved	analysis	of	multi-shell	diffusion	
MRI	data.	NeuroImage	103,	411-426,	doi:10.1016/j.neuroimage.2014.07.061	
(2014).	

81	 Basser,	P.	J.,	Mattiello,	J.	&	LeBihan,	D.	MR	diffusion	tensor	spectroscopy	and	
imaging.	Biophysical	journal	66,	259-267,	doi:10.1016/S0006-3495(94)80775-1	
(1994).	

82	 Fieremans,	E.,	Jensen,	J.	H.	&	Helpern,	J.	A.	White	matter	characterization	with	
diffusional	kurtosis	imaging.	NeuroImage	58,	177-188,	
doi:10.1016/j.neuroimage.2011.06.006	(2011).	

83	 Jensen,	J.	H.,	Helpern,	J.	A.,	Ramani,	A.,	Lu,	H.	&	Kaczynski,	K.	Diffusional	kurtosis	
imaging:	the	quantification	of	non-gaussian	water	diffusion	by	means	of	magnetic	
resonance	imaging.	Magnetic	resonance	in	medicine	53,	1432-1440,	
doi:10.1002/mrm.20508	(2005).	

84	 Zhang,	H.,	Schneider,	T.,	Wheeler-Kingshott,	C.	A.	&	Alexander,	D.	C.	NODDI:	practical	
in	vivo	neurite	orientation	dispersion	and	density	imaging	of	the	human	brain.	
NeuroImage	61,	1000-1016,	doi:10.1016/j.neuroimage.2012.03.072	(2012).	

85	 Sotiropoulos,	S.	N.,	Behrens,	T.	E.	&	Jbabdi,	S.	Ball	and	rackets:	Inferring	fiber	fanning	
from	diffusion-weighted	MRI.	NeuroImage	60,	1412-1425,	
doi:10.1016/j.neuroimage.2012.01.056	(2012).	

86	 Bastiani,	M.	et	al.	Improved	tractography	by	modelling	sub-voxel	fibre	patterns	
using	asymmetric	fibre	orientation	distributions.	ISMRM	Proceedings,	Singapore,	p.	
10	(2016).	

87	 Cottaar,	M.	et	al.	A	generative	model	of	white	matter	axonal	orientations	near	the	
cortex.	ISMRM	Proceedings,	Toronoto,	p.	351	(2015).	

88	 Glasser,	M.	F.	&	Rilling,	J.	K.	DTI	tractography	of	the	human	brain's	language	
pathways.	Cereb	Cortex	18,	2471-2482,	doi:10.1093/cercor/bhn011	(2008).	

89	 Ramayya,	A.	G.,	Glasser,	M.	F.	&	Rilling,	J.	K.	A	DTI	investigation	of	neural	substrates	
supporting	tool	use.	Cereb	Cortex	20,	507-516,	doi:10.1093/cercor/bhp141	(2010).	

90	 Rilling,	J.	K.,	Glasser,	M.	F.,	Jbabdi,	S.,	Andersson,	J.	&	Preuss,	T.	M.	Continuity,	
divergence,	and	the	evolution	of	brain	language	pathways.	Frontiers	in	evolutionary	
neuroscience	3,	11,	doi:10.3389/fnevo.2011.00011	(2011).	

91	 Rilling,	J.	K.	et	al.	The	evolution	of	the	arcuate	fasciculus	revealed	with	comparative	
DTI.	Nature	neuroscience	11,	426-428,	doi:10.1038/nn2072	(2008).	

92	 Vincent,	J.	L.	et	al.	Intrinsic	functional	architecture	in	the	anaesthetized	monkey	
brain.	Nature	447,	83-86,	doi:10.1038/nature05758	(2007).	



	 24	

93	 Smith,	S.	M.	The	future	of	FMRI	connectivity.	NeuroImage	62,	1257-1266,	
doi:10.1016/j.neuroimage.2012.01.022	(2012).	

94	 Power,	J.	D.,	Schlaggar,	B.	L.,	Lessov-Schlaggar,	C.	N.	&	Petersen,	S.	E.	Evidence	for	
hubs	in	human	functional	brain	networks.	Neuron	79,	798-813	(2013).	

95	 Haxby,	J.	V.	et	al.	A	common,	high-dimensional	model	of	the	representational	space	
in	human	ventral	temporal	cortex.	Neuron	72,	404-416,	
doi:10.1016/j.neuron.2011.08.026	(2011).	

96	 Fischl,	B.	et	al.	Cortical	folding	patterns	and	predicting	cytoarchitecture.	Cereb	
Cortex	18,	1973-1980,	doi:10.1093/cercor/bhm225	(2008).	

97	 Van	Essen,	D.	C.,	Glasser,	M.	F.,	Dierker,	D.	L.,	Harwell,	J.	&	Coalson,	T.	Parcellations	
and	hemispheric	asymmetries	of	human	cerebral	cortex	analyzed	on	surface-based	
atlases.	Cereb	Cortex	22,	2241-2262,	doi:10.1093/cercor/bhr291	(2012).	

98	 Buckner,	R.	L.,	Krienen,	F.	M.,	Castellanos,	A.,	Diaz,	J.	C.	&	Yeo,	B.	T.	The	organization	
of	the	human	cerebellum	estimated	by	intrinsic	functional	connectivity.	Journal	of	
neurophysiology	106,	2322-2345,	doi:10.1152/jn.00339.2011	(2011).	

99	 Yeo,	B.	T.	et	al.	The	organization	of	the	human	cerebral	cortex	estimated	by	intrinsic	
functional	connectivity.	Journal	of	neurophysiology	106,	1125-1165,	
doi:10.1152/jn.00338.2011	(2011).	

100	 Haber,	S.	N.	&	Behrens,	T.	E.	The	neural	network	underlying	incentive-based	
learning:	implications	for	interpreting	circuit	disruptions	in	psychiatric	disorders.	
Neuron	83,	1019-1039,	doi:10.1016/j.neuron.2014.08.031	(2014).	

101	 Xu,	J.	et	al.	Evaluation	of	slice	accelerations	using	multiband	echo	planar	imaging	at	
3	T.	NeuroImage	83,	991-1001,	doi:10.1016/j.neuroimage.2013.07.055	(2013).	

102	 Robinson,	E.	C.	et	al.	MSM:	A	new	flxible	framework	for	multimodal	surface	
matching.	NeuroImage	100,	414-426	(2014).	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 25	

III. Supplementary Figures 
 

 
Supplementary Figure 1 | Average cortical thickness map of 210 HCP subjects at each left hemisphere 
vertex and the associated colorized histogram.  The mean cortical thickness is around 2.6 mm, and this 
roughly divides fMRI data into high resolution (less than the mean cortical thickness) and low resolution 
(more than the mean cortical thickness).  The HCP’s 3T and 7T chosen resolutions are also plotted. For 
the data in this figure and other Supplementary Figures, subject recruitment procedures and informed 
consent forms, including consent to share de-identified data, were approved by the Washington 
University institutional review board. 
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Supplementary Figure 2 | dMRI data for 3T and 7T scans of the same subject (HCP Subject 158035). 
Top row: Fractional anisotropy (FA) maps (axial, coronal and sagittal views). Notice that B1 
inhomogeneities at 7T lead to poor SNR and noisy FA estimates in the inferior temporal regions (evident 
in the coronal views), but efforts have been taken to minimize them19.  Bottom row: DTI principal fiber 
orientations (coronal zoomed view of the area delineated by the yellow box). The orientations are RGB 
color-coded (Red: Left–Right, Green: Anterior–Posterior, Blue: Superior–Inferior) and superimposed on 
the structural T1w image. The pial surface and the WM/GM boundary surface are also shown.  
Reproduced, with permission, from Ref. 78. 
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Supplementary Figure 3 | Patterns of cortico-striatal connectivity revealed by tractography. Seed 
locations were in different cortical regions, including vmPFC (ventromedial prefrontal cortex), OFC (orbito-
frontal cortex), dACC (dorsal anterior cingulate cortex), dPFC (dorsal prefrontal cortex) and Premotor 
cortex.  Path probabilities (yellow: high, red: intermediate, black: low) are obtained using probabilistic 
tractography (FSL’s probtracx2, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide) and the Matrix 3 
(bidirectional white matter voxel to gray-matter terminations) algorithm to compute dense connectomes. 
N=150 HCP subjects were analyzed and averaged. Note the strong similarity to patterns of tracer-based 
connectivity reported in the macaque monkey, shown in the sketch on the right (reproduced with 
permission from Ref. 100).  
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Supplementary Figure 4 | Multi-band imaging schematic and exemplar results.  Left: A schematic 
representation of the array coil elements over a human head image and a multi-band (MB) excitation (8 
slices, in red). Each coil detects a linear combination of signals from each slice weighted by the sensitivity 
profile of that coil.  Right. Four slices from a whole brain data set with standard acquisition (upper left, 
MB1) and with SMS/MB acquisition with MB=8, MB=12, and MB=16, all obtained using a 32-channel coil 
on a 3T scanner. Visual inspection of the M=16 image reveals discernible artifacts (e.g., ghosting), 
whereas the MB=12 and MB=8 images appear much cleaner. Quantitative estimates of cross slice 
contamination and reconstruction noise can be made101. The HCP used MB=8 for fMRI and MB=3 for 
dMRI (now MB=4 or more for HCP Short). 
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Supplementary Figure 5 | Beta map of the mean fMRI timeseries.  The timecourses were averaged over 
the whole brain (including gray matter, white matter, and CSF), regressed into the data of each subject, 
and then averaged across (n = 210 HCP subjects).  One particularly striking characteristic of this map is 
how tissue-specific the global signal is (after ICA+FIX data cleanup), being generally most positive in grey 
matter, close to zero in white matter, and slightly negative in the ventricles.  The tissue specificity of this 
signal argues against a non-physiologic, non-BOLD contrast-based cause of the signal (e.g., direct 
biophysical effects of subject head motion).  This map by itself does not tell us to what extent the global 
signal is physiological noise vs. neural signal.  Although the data are averaged in the volume across 
subjects, they still appear relatively sharp because they are not smoothed.  Data at 
http://balsa.wustl.edu/0L1m. 
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Supplementary Figure 6 | Visualization of the mean grey signal.  The mean grey timeseries beta map 
(top rows) and the ratio of the variance of the mean grey timeseries to the total BOLD variance (i.e., 
variance classified as signal by ICA+FIX; bottom rows). The absolute magnitude of the mean grey signal 
is highest in sensory regions including visual cortex, early somatosensory cortex (particularly of the face), 
early auditory cortex, and several thalamic nuclei including the LGN/MGN.  Visual, somatosensory, 
auditory, and likely vestibular cortical areas are highlighted with black outlines.  Data based on averaging 
across 210 HCP subjects, aligned using MSMAll for the cortical surface.  When the global signal is strong 
in individual subjects, it closely matches the group average pattern, however when it is weaker, it may or 
may not match the group pattern.  In these cases, the global signal often looks like one or another 
widespread RSN (e.g., the task positive or task negative (default mode) network).  This is further 
evidence that removing the global signal as a preprocessing step may distort resting state functional 
connectivity and hence that we need a more selective way to clean global noise out of the data. The 
bottom row is a relative measure of how much the fMRI timeseries will be altered by regressing out the 
mean grey timeseries (on average across subjects), as it is a measure of the proportion of the total BOLD 
signal represented by the mean grey timeseries.  Regressing out the mean grey signal will also tend to 
cause resting state gradient boundaries to move somewhat in the regions where this map has sharp 
gradients34.  Data at http://balsa.wustl.edu/2VnN. 
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Supplementary Figure 7 | Effects of the Wishart rolloff on dense functional connectivity maps of both an 
individual subject and group data (210 HCP subjects; MSMAll surface registration).  Top rows show an 
individual subject, before (column 1) and after (column 2) Wishart rolloff for a seed location in lateral 
parietal cortex (white dot in upper left panels).  The correlation increases dramatically as unstructured 
spatio-temporal noise is reduced, however the map is not substantially “smoothed” as it would be with 
typical smoothing algorithms.  Bottom rows show a group dataset before and after Wishart rolloff for a 
seed location in the posterior cingulate sulcus (white dot in lower left panels).  The dataset has been 
created using the MIGP57 algorithm to generate a group PCA series (d=4500) that represents the group 
concatenated timeseries.  Because of the hard cutoff at PCA component number 4500, there is a ‘ringing” 
pattern resulting from spatial autocorrelation in the spatio-temporal noise that is represented by the PCA 
components with the lowest eigenvalues.  If a Gaussian filter had been applied, this pattern of “local 
connectivity” would be a blob instead of rings. The Wishart rolloff eliminates these rings and again 
dramatically increases the SNR of the data.  Data at http://balsa.wustl.edu/rrpl. 
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Supplementary Figure 8 | The HCP language task (story vs baseline) beta maps and their spatial 
gradients. Beta maps (rows 1 and 3) and gradient maps (rows 2 and 4) are from two independent groups 
of 210 HCP subjects, “210P” (rows 1 and 2) and “210V” (rows 3 and 4).  Because of the large number of 
high quality HCP subjects, the beta maps are very similar across the two groups, and the strong gradients 
in the beta maps are also very similar.  Also shown are white contours of a Bonferroni corrected 
significance threshold across all 91282 grayordinates (z+/- ~5).  Two things are apparent: 1) Because of 
the large amount of high quality data, most of the brain is either significantly activated or deactivated (an 
issue that has been discussed before, see Ref. 60).  Thus the statistical threshold is not particularly 
biologically meaningful (a point about statistical thresholds that generally applies).  At the same time, the 
statistical threshold is also not strongly reproducible, in spite of the large amount of high quality data 
(highlighted ellipses show large differences in the area of activation classified as “significant” that are not 
particularly impressive when viewing the unthresholded beta maps).  In contrast, the strong gradients in 
the beta maps are much more reproducible, are likely also more biologically meaningful, and hence 
provide a better substrate for defining regions of activation or comparing across studies.  Data at 
http://balsa.wustl.edu/PrmK. 
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Supplementary Figure 9 | Effects on average brain volume of registering 196 HCP brains to MNI space.  
The total brain volume (minimal preprocessing pipelines’ whole brain mask) measured in the subject’s 
native physical space is around ~1350 cc; however, after registration to MNI space it is ~1800 cc, though 
the variability in brain volumes goes down as indicated by the narrower standard deviation error bars.  
This reduction in variability is the intended effect of registration, but the increase in brain volume is group 
average registration drift that was built into MNI standard space during the non-rigid registrations of the 
template generation process62-64.  
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Supplementary Figure 10 | A comparison between the HCP data and published retinotopic parcellation 
data.  Data from Ref. 64 and from 120 HCP subjects (from Q1-2) were registered using MSM areal-
feature-based registration102 and group average registration drift was removed from both.  Because of 
this, a contour in functional connectivity in the MT+ region distinguishing strong connectivity to the heavily 
myelinated IPS hotspot (LIPv, column 1) and to the STS (column 3) lines up with the border between 
MT+V4t (orange and yellow) and MST+FST (red and maroon, middle column).  This illustrates the kind of 
precise cross-modal, cross-study boundary comparisons possible using the HCP-Style paradigm.  Data at 
http://balsa.wustl.edu/x2Lz. 
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Supplementary Figure 11 | Classification of area 55b in individual subjects by the areal classifier.  The 
typical location of area 55b is shown in black or white outlines on the inflated left hemisphere surface.  
The top two rows show a subject having an area 55b in the typical location found in the population.  Rows 
1 and 2 are entirely separate ‘test/retest’ runs of this subject through the full HCP MRI acquisition and 
analysis protocol.  Column 1 is the subject’s individual curvature map, column 2 is the subject’s myelin 
map, column 3 is a d=40 RSN map that shows strong connectivity between 55b and other areas of the 
language network, column 4 is the raw probabilistic output of the areal classifier, column 5 is the final 
output of the areal classifier.  Rows 3 and 4 show a different subject whose 55b is atypically split (heavy 
myelination running through the population average location of 55b and a concomitant lack of resting 
state connectivity).  In both runs through the protocol, this subject shows a split 55b that is accurately 
detected by the areal classifier, showing that the classifier can accurately classify atypical subjects and 
that these atypical patterns are stable across time.  Rows 5 and 6 show a third subject whose 55b is 
atypically shifted relative to its neighbors.  Again the pattern is stable across time and the areal classifier 
is able to accurately detect the area.  Reprinted from Ref. 34.  Data at http://balsa.wustl.edu/WPPn. 
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Supplementary Figure 12 | Effects of averaging surface coordinates and folding maps after 
areal feature-based registration (MSMAll).  The first row shows the group average midthickness 
surface (left), and the group average curvature map also displayed on inflated and flat surfaces 
(center and right).  The group consisted of 210 subjects.  The second row shows an individual 
subject’s midthickness surface (left), and the individual’s curvature map displayed also on 
inflated and flat surfaces (center and right).  Note how much less detailed the group average 
surfaces and curvature maps are in most regions of cortex.  However, in regions with consistent 
folding patterns across subjects and consistent relationships between cortical areas and folds, 
the group average patterns remain sharp (e.g. the central and calcarine sulci and the insula).  
The third row shows the group average T1w volume (after FNIRT nonlinear volume registration 
to MNI152 space of each subject in the group) together with the group average white (green) 
and pial (blue) surface contours.  The fourth row shows the same individual subject’s T1w 
volume together with the individual’s white and pial surfaces (after aligning both the T1w volume 
and the surfaces to the group average in MNI space using FNIRT nonlinear volume 
registration).  Despite the high precision of the white and pial surfaces in following the grey 
matter ribbon in the individual, the group average surfaces do not follow the group average 
volume particularly well, except in the regions where there are consistent folding patterns across 
subjects and consistent relationships between cortical areas and folds (as mentioned above).  
These issues also occur with folding-based surface registration (not shown), though they are 
less severe, because for folding-based registration the dominant factor is inconsistency in 
folding patterns across subjects (as no attempt is made to directly align cortical areas).  The 
midthickness surfaces are the average of the white and pial surfaces (this average is performed 
on each individual, and the group midthickness surface is the average of the individual 
midthickness surfaces).  Data at http://balsa.wustl.edu/7qP3. 
	


