1,065 research outputs found

    Changes in paediatric respiratory infections at a UK teaching hospital 2016–2021; impact of the SARS-CoV-2 pandemic

    Get PDF
    Objective: To describe the impact of the SARS-CoV-2 pandemic on the incidence of paediatric viral respiratory tract infection in Oxfordshire, UK. Methods: Data on paediatric Emergency Department (ED) attendances (0–15 years inclusive), respiratory virus testing, vital signs and mortality at Oxford University Hospitals were summarised using descriptive statistics. Results: Between 1-March-2016 and 30-July-2021, 155,056 ED attendances occurred and 7,195 respiratory virus PCRs were performed. Detection of all pathogens was suppressed during the first national lockdown. Rhinovirus and adenovirus rates increased when schools reopened September-December 2020, then fell, before rising in March-May 2021. The usual winter RSV peak did not occur in 2020/21, with an inter-seasonal rise (32/1,000 attendances in 0–3 yr olds) in July 2021. Influenza remained suppressed throughout. A higher paediatric early warning score (PEWS) was seen for attendees with adenovirus during the pandemic compared to pre-pandemic (p = 0.04, Mann-Witney U test), no other differences in PEWS were seen. Conclusions: SARS-CoV-2 caused major changes in the incidence of paediatric respiratory viral infection in Oxfordshire, with implications for clinical service demand, testing strategies, timing of palivizumab RSV prophylaxis, and highlighting the need to understand which public health interventions are most effective for preventing respiratory virus infections

    Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults

    Get PDF
    BACKGROUND: Accurate blood pressure (BP) measurement depends on the reliability of oscillometric cuff pressure pulses (OscP) and Korotkoff sounds (KorS) for automated oscillometric and manual techniques. It has been widely accepted that respiration is one of the main factors affecting BP measurement. However, little is known about how respiration affects the signals from which BP measurement is obtained. The aim was to quantify the modulation effect of respiration on oscillometric pulses and KorS during clinical BP measurement. METHODS: Systolic and diastolic BPs were measured manually from 40 healthy subjects (from 23 to 65 years old) under normal and regular deep breathing. The following signals were digitally recorded during linear cuff deflation: chest motion from a magnetometer to obtain reference respiration, cuff pressure from an electronic pressure sensor to derive OscP, and KorS from a digital stethoscope. The effects of respiration on both OscP and KorS were determined from changes in their amplitude associated with respiration between systole and diastole. These changes were normalized to the mean signal amplitude of OscP and KorS to derive the respiratory modulation depth. Reference respiration frequency, and the frequencies derived from the amplitude modulation of OscP and KorS were also calculated and compared. RESULTS: Respiratory modulation depth was 14 and 40 % for OscP and KorS respectively under normal breathing condition, with significant increases (both p  0.05) during deep breathing, and for the oscillometric signal during normal breathing (p > 0.05). CONCLUSIONS: Our study confirmed and quantified the respiratory modulation effect on the oscillometric pulses and KorS during clinical BP measurement, with increased modulation depth under regular deeper breathing

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    Cognitive ability and physical health:A Mendelian randomization study

    Get PDF
    Causes of the association between cognitive ability and health remain unknown, but may reflect a shared genetic aetiology. This study examines the causal genetic associations between cognitive ability and physical health. We carried out two-sample Mendelian randomization analyses using the inverse-variance weighted method to test for causality between later life cognitive ability, educational attainment (as a proxy for cognitive ability in youth), BMI, height, systolic blood pressure, coronary artery disease, and type 2 diabetes using data from six independent GWAS consortia and the UK Biobank sample (N = 112 151). BMI, systolic blood pressure, coronary artery disease and type 2 diabetes showed negative associations with cognitive ability; height was positively associated with cognitive ability. The analyses provided no evidence for casual associations from health to cognitive ability. In the other direction, higher educational attainment predicted lower BMI, systolic blood pressure, coronary artery disease, type 2 diabetes, and taller stature. The analyses indicated no causal association from educational attainment to physical health. The lack of evidence for causal associations between cognitive ability, educational attainment, and physical health could be explained by weak instrumental variables, poorly measured outcomes, or the small number of disease cases

    Balancing the playing field: collaborative gaming for physical training.

    Get PDF
    BACKGROUND: Multiplayer video games promoting exercise-based rehabilitation may facilitate motor learning, by increasing motivation through social interaction. However, a major design challenge is to enable meaningful inter-subject interaction, whilst allowing for significant skill differences between players. We present a novel motor-training paradigm that allows real-time collaboration and performance enhancement, across a wide range of inter-subject skill mismatches, including disabled vs. able-bodied partnerships. METHODS: A virtual task consisting of a dynamic ball on a beam, is controlled at each end using independent digital force-sensing handgrips. Interaction is mediated through simulated physical coupling and locally-redundant control. Game performance was measured in 16 healthy-healthy and 16 patient-expert dyads, where patients were hemiparetic stroke survivors using their impaired arm. Dual-player was compared to single-player performance, in terms of score, target tracking, stability, effort and smoothness; and questionnaires probing user-experience and engagement. RESULTS: Performance of less-able subjects (as ranked from single-player ability) was enhanced by dual-player mode, by an amount proportionate to the partnership's mismatch. The more abled partners' performances decreased by a similar amount. Such zero-sum interactions were observed for both healthy-healthy and patient-expert interactions. Dual-player was preferred by the majority of players independent of baseline ability and subject group; healthy subjects also felt more challenged, and patients more skilled. CONCLUSION: This is the first demonstration of implicit skill balancing in a truly collaborative virtual training task leading to heightened engagement, across both healthy subjects and stroke patients

    Drug-Eluting Stents in Patients with Chronic Kidney Disease: A Prospective Registry Study

    Get PDF
    BACKGROUND: Chronic kidney disease (CKD) is strongly associated with adverse outcomes after percutaneous coronary intervention (PCI). There are limited data on the effectiveness of drug-eluting stents (DES) in patients with CKD. METHODOLOGY/PRINCIPAL FINDINGS: Of 3,752 consecutive patients enrolled in the Guthrie PCI Registry between 2001 and 2006, 436 patients with CKD - defined as a creatinine clearance <60 mL/min - were included in this study. Patients who received DES were compared to those who received bare metal stents (BMS). Patients were followed for a mean duration of 3 years after the index PCI to determine the prognostic impact of stent type. Study end-points were all-cause death, myocardial infarction (MI), target vessel revascularization (TVR), stent thrombosis (ST) and the composite of major adverse cardiovascular events (MACE), defined as death, MI or TVR. Patients receiving DES in our study, by virtue of physician selection, had more stable coronary artery disease and had lower baseline risk of thrombotic or restenotic events. Kaplan-Meier estimates of proportions of patients reaching the end-points were significantly lower for DES vs. BMS for all-cause death (p = 0.0008), TVR (p = 0.029) and MACE (p = 0.0015), but not MI (p = 0.945) or ST (p = 0.88). Multivariable analysis with propensity adjustment demonstrated that DES implantation was an independent predictor of lower rates of all-cause death (hazard ratio [HR] 0.48, 95% confidence interval [CI] 0.25-0.92), TVR (HR 0.50, 95% CI 0.27-0.94) and MACE (HR 0.62, 95% CI 0.41-0.94). CONCLUSIONS: In a contemporary PCI registry, selective use of DES in patients with CKD was safe and effective in the long term, with lower risk of all-cause death, TVR and MACE and similar risk of MI and ST as compared with BMS. The mortality benefit may be a result of selection bias and residual confounding, or represent a true finding; a hypothesis that warrants clarification by randomized clinical trials

    A Genome-Wide Association Study on Obesity and Obesity-Related Traits

    Get PDF
    Large-scale genome-wide association studies (GWAS) have identified many loci associated with body mass index (BMI), but few studies focused on obesity as a binary trait. Here we report the results of a GWAS and candidate SNP genotyping study of obesity, including extremely obese cases and never overweight controls as well as families segregating extreme obesity and thinness. We first performed a GWAS on 520 cases (BMI>35 kg/m2) and 540 control subjects (BMI<25 kg/m2), on measures of obesity and obesity-related traits. We subsequently followed up obesity-associated signals by genotyping the top ∼500 SNPs from GWAS in the combined sample of cases, controls and family members totaling 2,256 individuals. For the binary trait of obesity, we found 16 genome-wide significant signals within the FTO gene (strongest signal at rs17817449, P = 2.5×10−12). We next examined obesity-related quantitative traits (such as total body weight, waist circumference and waist to hip ratio), and detected genome-wide significant signals between waist to hip ratio and NRXN3 (rs11624704, P = 2.67×10−9), previously associated with body weight and fat distribution. Our study demonstrated how a relatively small sample ascertained through extreme phenotypes can detect genuine associations in a GWAS

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    Get PDF
    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatization reagent, 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) contains a bromophenethyl group to incorporate an isotopic signature to the derivatives and to add additional fragmentation identifiers, collectively enhancing the abilities for detection and screening of unknown aldehydes. Derivatization can be achieved under mild conditions (pH 5.7, 10 °C). By changing the secondary reagent (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide instead of sodium cyanoborohydride), 4-APEBA is also applicable to the selective derivatization of carboxylic acids. Synthesis of the new label, exploration of the derivatization conditions, characterization of the fragmentation of the aldehyde and carboxylic acid derivatives in MS/MS, and preliminary applications of the labeling strategy for the analysis of aldehydes in urine and plasma are described
    corecore