805 research outputs found

    Assessing uncertainties in estimating surface energy fluxes from remote sensing over natural grasslands in Brazil

    Get PDF
    Evapotranspiration (ET) is one of the main fluxes in the global water cycle. As the Brazilian Pampa biome carries a rich biodiversity, accurate information on the ET dynamics is essential to support its proper monitoring and establish conservation strategies. In this context, we assessed an operational methodology based on the Simplified Surface Energy Balance Index (S-SEBI) model to estimate energy fluxes over the natural grasslands of the Pampa between 2014 and 2019. The S-SEBI is an ET model that requires a minimum of meteorological inputs and has demonstrated reasonable accuracy worldwide. Therefore, we investigated the model performance considering radiation data from both ERA5 reanalysis and Eddy Covariance measurements from a flux tower. Furthermore, comparisons from satellite-based estimates with in situ measurements were performed with and without energy balance closure (EBC). Results indicated that the meteorological inputs have low sensitivity on daily ET estimates from the S-SEBI model. In contrast, the instantaneous energy balance components are more affected. The strong seasonality impacts the evaporative fraction, which is more evident in late summer and autumn and may compromise the performance of the model in the biome. The effects in the daily ET are lower when in situ data without EBC are considered as ground truth. However, they are less correlated with the remote sensing-based estimates. These insights are useful to monitor water and energy fluxes from local to regional scale and provide the opportunity to capture ET trends over the natural grasslands of the Pampa

    Neuropsychological maturity in pre-school children

    Get PDF
    The purpose of the research was to improve neuropsychological maturity in preschool children; to achieve this; a program of strategies that reinforced the levels of neuropsychological maturity was carried out. The research had a quantitative approach, hypothetical-deductive method and quasi-experimental design; a pre-test and post-test of the Cumanin questionnaire, a valid and reliable instrument, was applied to a sample of 450 students of the initial level. The research found differences between the levels of neuropsychological maturity in pre-school children before and after the application of the program. In this sense, it should be pointed out that before the application of the program, 13.1% were at the beginning level, 72.2% were in process and 14.7% were at the achieved level; after the application of the program, 6.2% of the children were at the beginning level, 72.2% were in process and 21.6% were at the achieved level, which means that the children were at the beginning level, 72.2% were in process and 21.6% were at the achieved level. Therefore, it was concluded that the program generates a positive effect on psychomotor skills in preschool children, since highly significant differences were evidenced (z=-16.065; p<0.000)

    Dissipative Future Universe without Big Rip

    Full text link
    The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalized chaplygin gas, characterized by equation of state p=Aρ1αp=-\frac{A}{\rho^\frac{1}{\alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρp=\omega\rho; ω<1\omega < -1, as well as chaplygin gas simultaneously then the big rip problem does not arises and the scale factor is found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy

    Naturally light right-handed neutrinos in a 3-3-1 Model

    Get PDF
    In this work we show that light right-handed neutrinos, with mass in the sub-eV scale, is a natural outcome in a 3-3-1 model. By considering effective dimension five operators, the model predicts three light right-handed neutrinos, weakly mixed with the left-handed ones. We show also that the model is able to explain the LSND experiment and still be in agreement with solar and atmospheric data for neutrino oscillation.Comment: About 5 pages, no-figure

    The Influence of Free Quintessence on Gravitational Frequency Shift and Deflection of Light with 4D momentum

    Full text link
    Based on the 4D momentum, the influence of quintessence on the gravitational frequency shift and the deflection of light are examined in modified Schwarzschild space. We find that the frequency of photon depends on the state parameter of quintessence wqw_q: the frequency increases for 1<wq<1/3-1<w_q<-1/3 and decreases for 1/3<wq<0-1/3<w_q<0. Meanwhile, we adopt an integral power number aa (a=3ωq+2a = 3\omega_q + 2) to solve the orbital equation of photon. The photon's potentials become higher with the decrease of ωq\omega_q. The behavior of bending light depends on the state parameter ωq\omega_q sensitively. In particular, for the case of ωq=1\omega_q = -1, there is no influence on the deflection of light by quintessence. Else, according to the H-masers of GP-A redshift experiment and the long-baseline interferometry, the constraints on the quintessence field in Solar system are presented here.Comment: 12 pages, 2 figures, 4 tables. European Physical Journal C in pres

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage

    Get PDF
    Chemical looping processes based on multiple-step reduction and oxidation of metal oxides hold great promise for a variety of energy applications, such as CO2 capture and conversion, gas separation, energy storage, and redox catalytic processes. Copper-based mixed oxides are one of the most promising candidate materials with a high oxygen storage capacity. However, the structural deterioration and sintering at high temperatures is one key scientific challenge. Herein, we report a precursor engineering approach to prepare durable copper-based redox sorbents for use in thermochemical looping processes for combustion and gas purification. Calcination of the CuMgAl hydrotalcite precursors formed mixed metal oxides consisting of CuO nanoparticles dispersed in the Mg-Al oxide support which inhibited the formation of copper aluminates during redox cycling. The copper-based redox sorbents demonstrated enhanced reaction rates, stable O2 storage capacity over 500 redox cycles at 900 °C, and efficient gas purification over a broad temperature range. We expect that our materials design strategy has broad implications on synthesis and engineering of mixed metal oxides for a range of thermochemical processes and redox catalytic applications

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore