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Abstract
Evapotranspiration (ET) is one of the main fluxes in the global water cycle. As the Brazilian Pampa biome carries a rich 
biodiversity, accurate information on the ET dynamics is essential to support its proper monitoring and establish conservation 
strategies. In this context, we assessed an operational methodology based on the Simplified Surface Energy Balance Index 
(S-SEBI) model to estimate energy fluxes over the natural grasslands of the Pampa between 2014 and 2019. The S-SEBI 
is an ET model that requires a minimum of meteorological inputs and has demonstrated reasonable accuracy worldwide. 
Therefore, we investigated the model performance considering radiation data from both ERA5 reanalysis and Eddy Covari-
ance measurements from a flux tower. Furthermore, comparisons from satellite-based estimates with in situ measurements 
were performed with and without energy balance closure (EBC). Results indicated that the meteorological inputs have low 
sensitivity on daily ET estimates from the S-SEBI model. In contrast, the instantaneous energy balance components are more 
affected. The strong seasonality impacts the evaporative fraction, which is more evident in late summer and autumn and may 
compromise the performance of the model in the biome. The effects in the daily ET are lower when in situ data without EBC 
are considered as ground truth. However, they are less correlated with the remote sensing-based estimates. These insights 
are useful to monitor water and energy fluxes from local to regional scale and provide the opportunity to capture ET trends 
over the natural grasslands of the Pampa.

1 Introduction

Evapotranspiration (ET) is widely used to measure the 
amounts of total water loss through several key processes 
between land and the atmosphere (Wang and Dickinson 
2012; Dou and Yang 2018). Its prediction plays an impor-
tant role in drought analysis, climate change studies, water 
level balance, agricultural and forest meteorology, long-term 
decision-making in food and water security policies, and 
optimum allocation of water resources (Valipour et al. 2019).  

ET can be directly measured by using either lysimeter or 
water balance approach (Kumar et al., 2011). Nonetheless, 
these methodologies do not allow estimating the land surface 
fluxes when dealing with large spatial scales (Chen et al. 
2005; Courault et al. 2005).

Satellite observations have been used for monitoring 
surface conditions over the last few decades because they 
provide the potential to bridge the gap between point meas-
urements and larger scale surface processes (Ma et al. 2015), 
thus supplying the need for accessible data for the regions 
lacking land measurements (Zhang et al. 2018). In addition, 
accurate land use maps, and abundant meteorological refer-
ence data have considerably improved the ability to obtain 
remotely sensed ET and its flux components (Webster et al. 
2016).

Several models have been developed using information 
from different sensors and often in conjunction with ancil-
lary surface and atmospheric data for ET estimation (Bas-
tiaanssen et al. 1998; Roerink et al. 2000; Senay et al. 2007; 
Allen et al. 2007). They usually vary from purely empiri-
cal to more physically based techniques derived from the 
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surface energy balance (SEB) equation and the information 
obtained from relationships between satellite-derived veg-
etation index and land surface temperature (LST) (Liou and 
Kar 2014). Some of these methods are dependent on many 
variables measured in surface weather stations as input data, 
which might prevent its application in large areas with insuf-
ficient weather data measuring stations. In contrast, there 
are some simplified approaches that adopt assumptions of 
meteorological parameters (Mutti et al. 2019). These sim-
plifications and multiple representation forms may lead to 
uncertainties in the estimates generated (Chen et al. 2016). 
Consequently, an evaluation of the benefits and inadequacies 
of these approaches is a fundamental step.

The Simplified Surface Energy Balance Index (S-SEBI) 
model (Roerink et al. 2000) estimates ET as a fraction of 
available energy (named evaporative fraction), in which 
maximum and minimum temperatures are determined over 
dry and wet surface lines drawn in an LST–albedo relation-
ship. The model has been applied by several researchers that 
reported reasonable accuracy (Sobrino et al. 2005, 2007; Fan 
et al. 2007; Olivera-Guerra et al. 2014; Bhattarai et al. 2016). 
One of the main advantages of using the LST–albedo rela-
tionship is that the albedo is sensitive to the total vegetation 
cover including green and senescent vegetation (Merlin et al. 
2014). Furthermore, the model requires a minimum of mete-
orological data, being entirely suitable for zones with few 
or none in situ measurements (Olivera-Guerra et al. 2014).

Quantifying ET in a variety of terrestrial ecosystems is 
valuable for a better understanding of different surface types, 
assessment of local to global water balances, and water 
management of agricultural lands. Moreover, the specific 
features of each biome are essential to formulate proper con-
servation strategies, appropriate infrastructure, and to under-
stand the impacts of land use changes in each environment 
(Oliveira et al. 2017; Wagle et al. 2017). Natural grasslands 
are fundamental to preserve water resources and carbon 
accumulation in the soil (Moreira et al. 2019), and around 
the world, they cover vast regions including the North Amer-
ican Great Plains, the Eurasian steppes of Russia, China and 
Mongolia, and the South American Pampas (Chaneton et al. 
2012). In Brazilian territory, the Pampa biome represents 
2.07% and is recognized as containing a rich biodiversity 
characterized by a meadow mosaic, with small scrub vegeta-
tion areas and forests (Ruviaro et al. 2016). It is known that 
different human activities may have distinctive impacts on 
water use due to economic development (Yu et al. 2021). For 
conservation purposes, accurate information on its dynamics 
becomes more relevant to support the proper monitoring of 
the water and energy fluxes.

Over grasslands and pastures in FL, USA, Battarai et al. 
(2016) suggested that S-SEBI performance for ET retrieving 
is comparable to the algorithms surface energy balance algo-
rithm for land (SEBAL) and mapping evapotranspiration at 

high resolution and with internalized calibration (MET-
RIC). Similarly, Senkondo et al. (2019) compared daily ET 
estimates derived from the models operational simplified 
surface energy balance (SSEBop), SEBAL and S-SEBI in 
eastern Africa. The authors reported that the S-SEBI model 
exhibited a statistically similar ET as the ensemble mean 
of all models tested and highlighted that the model can be 
applied elsewhere, especially where observed meteorologi-
cal variables are limited.

S-SEBI model has been applied in a large variety of 
climate conditions. However, a detailed assessment of the 
S-SEBI model in estimating surface fluxes over natural 
grasslands has not been well explored, especially consider-
ing the uncertainties associated with input data, assumptions 
made, and initial conditions. Furthermore, there is no con-
sensus on which model performs better under the particular 
conditions and climate of the Pampa biome. Therefore, the 
purpose of this paper is to investigate an operation method-
ology based on the S-SEBI model to accurately estimate the 
surface energy fluxes over natural grasslands. We established 
the main advantages and major uncertainty sources of the 
method and documented how the ET varies seasonally in the 
humid subtropical climate of the Brazilian Pampa.

2  Study site description

The Pampa biome is composed of old grasslands and cov-
ers an area of 178,243  km2, which includes the whole Uru-
guay territory, a part of Argentina, and about two-thirds of 
Rio Grande do Sul State in southern Brazil (Overbeck et al. 
2007). The vegetation consists of a mosaic dominated by a 
grassland matrix with occasional forested areas, and is home 
to one of the greatest diversities of grassland plants in the 
world (Boldrini 2009). The experimental area of this study 
(29°43′27.502″ S; 53°45′36.097″ W; 88 m elevation) is part 
of the international long term ecological research (ILTER) 
network and is located in the Federal University of Santa 
Maria, covering approximately 24 ha of natural vegetation 
characteristic of the Pampa biome (Rubert et al. 2018) suit-
able for field validation of different moderate-resolution sat-
ellite products (Fig. 1).

In the Pampa biome, cattle production is directly associ-
ated with the conservation of its natural grasslands, because 
it has been carried out for over 300 years and is the central 
maintainer of Pampa features. These activities are charac-
terized by low environmental impact, with little or no con-
tribution of external input (Viglizzo et al. 2001). Neverthe-
less, the expansion of the agricultural border together with 
overgrazing are the most frequent phenomena threatening 
the Pampa (Oliveira et al. 2017), leading to the loss of soil 
physical quality and consequent decrease plant diversity 
(Vargas et al. 2015).
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The Pampa biome climate is subtropical humid (Cfa) 
with hot summers according to the Köppen climate clas-
sification system (Maragno et al. 2013). It differs from 
tropical regions of Brazil in terms of seasonality, which 
is mainly dominated by solar radiation with regular pre-
cipitation rates (Rubert et al. 2018). These characteris-
tics ensure the particular environmental conditions of the 
Pampa ecosystem. In the summer season, the maximum 
temperature can be higher than 30 °C, whereas the winter 
is marked by low temperatures and frosts. The annual 
average temperature varies between 16 and 18 °C, and 
the precipitation between 1500 and 1600 mm (well dis-
tributed throughout the year). Moreover, this region is 
constantly subject to sudden changes in weather caused 
by the passage of the polar front.

3  Material and methods

According to Chen et al. (2016), there are three major 
sources of uncertainties related to surface fluxes: inad-
equate model structure, model input errors, and poorly 
defined parameters. We focused on studying these aspects 
for S-SEBI in order to find its fragilities and establish an 
operational method for retrieving ET over the Brazilian 

Pampa grasslands. The summary steps of the study are 
exhibited in the flowchart (Fig. 2).

3.1  Theoretical basis and S‑SEBI formulation

Among the various energy fluxes within the atmosphere and 
Earth’s surface, the knowledge of both sensible and latent heat 
fluxes is of fundamental importance for numerical modeling of 
atmospheric and hydrological processes (Gomez et al. 2005; 
Liou and Kar 2014). The most applied approaches to estimate 
ET from remote sensing observations are based on the simpli-
fied form of the SEB equation, which is given as:

where Rn is the surface net radiation (W  m−2), G is the soil 
heat flux (W  m−2), and H is the sensible heat flux (W  m−2), 
and LE is the latent heat flux of evaporation due to ET (W 
 m−2). ET in volume units can be computed from LE by the 
amount of energy needed to evaporate water at a specific 
temperature and pressure (Glenn et al. 2010). LE is esti-
mated as a residual according to:

The Rn can be obtained from remote sensing data according 
to the following equation (Hurtado and Sobrino 2001):

(1)Rn = G + LE + H

(2)LE = Rn − G − H

Fig. 1  Study area location in 
Brazil and South America. 
RGB432 color composition 
refers to the Landsat 8 OLI 
scene from August 2018 Path/
Row: 222/081
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where Rs is the shortwave downward radiation (W  m−2), 
Rld the longwave downward radiation (W  m−2), α is the 
albedo estimated according to Liang (2001), ε is the land 
surface emissivity (LSE), Ts is the LST in Kelvin (K), and 
σ = 5.67 ×  10−8 W  m−2  K−4 is the Stefan–Boltzmann con-
stant. G represents the energy used to heat up the soil or 
energy released due to cooling of soil and is frequently esti-
mated using an empirical relationship between albedo, LST 
and normalized difference vegetation index (NDVI) (Bas-
tiaanssen 2000):

The LST is a key variable to be retrieved from the TIR 
data because it reflects the amount of radiation emitted 
from the surface and subsurface of the earth, and the 
exchange of energy between the earth surface and atmos-
phere (Weng et al. 2019). However, atmospheric, angular, 
and emissivity effects have to be compensated in order 
to acquire reliable estimates (Li et al. 2013). The split 

(3)Rn = (1 − a)Rs + εRld − ε�T4

s

(4)G =
Ts

a

(

0.0038a + 0.0074a2
)

−
(

1 − 0.98NDVI4
)

Rn

window (SW) algorithm used in this paper was proposed 
by Jiménez-Muñoz et al. (2014) based on the mathematical 
structure proposed by Sobrino et al. (1996). Thus, the LST 
can be computed as

where Tjsen and Tjsen are the at-sensor brightness tempera-
tures at the bands i and j (10 and 11 for Landsat 8) in K, ε 
is the mean LSE, ε = 0.5( εi + εj), Δε is the LSE difference, 
Δ� = (�i − ��j) and w is the total atmospheric water vapor 
content (in g·cm−2) estimated according to Buck (1981). As 
a prior knowledge to obtain LST, LSE was calculated from 
NDVI values according to Sobrino et al. (2008) using the 
NDVI threshold method.

The S-SEBI model does not require calculation of H. On 
the other hand, the contrast between an albedo-dependent 
maximum and minimum LST for dry and wet conditions, 
respectively, is a main base of the model to partition avail-
able energy into H and LE fluxes and is used for computing 
the evaporative fraction (Λ). No additional meteorological 

(5)
LST = Tisen + 1.378

(

Tisen − Tjsen
)

+ 0.183
(

Tisen − Tjsen
)2

− 0.268 + (54.3 − 2.238w)(1 − �) + (−129.2 + 16.4w)Δ�

Fig. 2  Flowchart with the main steps of the study
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data is needed if the surface extremes are available on the 
scene studied (Liou and Kar 2014). In the case of a wet 
pixel, H is assumed as zero, so the maximum LE  (LEmax) can 
be estimated by subtracting G from Rn  (LEmax = Rn − G). In 
contrast, at a dry pixel H is the highest (Hmax), which can be 
estimated by subtracting the G from Rn (i.e., Hmax = Rn − G). 
Therefore, Λ is expressed as:

where TH and TLE are the temperatures of the dry and wet 
conditions in K. Afterwards, the daily ET (ETday) can be 
computed assuming that Λ is constant for the day under 
clear-sky conditions (Brutsaert and Sugita 1992), whereas 
the instantaneous Rn can be extrapolated to a daily scale 
using the Cdi ratio. This ratio consists of a relationship 
between the daily net radiation flux and instantaneous 
radiation flux (Rni) and depends on the day of year (DOY) 
(Sobrino et al. 2007; Olivera-Guerra et al. 2014):

where λ is the latent heat of water vaporization (2450 J  g−1).

3.2  Data collection and pre‑processing

3.2.1  In situ flux data

Eddy covariance (EC) method has been used as the typical 
reference data for validating several ET estimates at the site 
and pixel level scales (Numata et al. 2017; Li et al. 2018). 
The data required to estimate ET with EC over the study 
site were obtained from a flux tower installed at 29.725°S; 
53.760°W (Fig. 1) with the follow sensor: a 3D sonic ane-
mometer (Wind Master Pro; Gill Instruments, Hampshire, 
UK), to measure wind components and air temperature, 
and a gas analyzer (LI7500, LI-COR Inc., Lincoln, USA), 
to measure  H2O/CO2 concentrations. Both sensors were 
installed at 3 m height of the surface and sampled at a 10 Hz 
frequency, until June 15, 2016. After this period, the gas 
analyzer and the anemometer were replaced by the sensor 
integrated  CO2 and  H2O open-path gas analyzer and a 3D 
sonic anemometer (IRGASON, Campbell Scientific Inc., 
Logan, USA), measuring in the same height and frequency. 
The EddyPro Advanced software (version 5.1, LI-COR) was 
used to process the LE and H data over half-hour time scales 
using the EC method (for detailed configurations of EC pro-
cessing see Rubert et al. 2018). The EC data footprint analy-
ses indicate that about 90% of the flux originated within a 
circle with a radius of 115 m centered in the flux tower.

Along with the flux tower, the shortwave downward 
radiation, Rs, longwave downward radiation, Rld, and net 

(6)Λ =
TH − TS

TH − TLE

(7)ETday = 86400Λ
Cdi − Rni

�

radiation, Rn, were measured with a net radiometer (CNR4, 
Kipp & Zonen, Delft, the Netherlands) at 3 m height of the 
surface. Soil heat flux, G, was measured with a heat flux 
plate (HFP01L; Hukseflux Thermal Sensors B.V., Delft, the 
Netherlands) at depths of 0.10 m. These measurements were 
recorded each 1 min, and averaged over half-hour.

Previous studies have reported energy balance closure 
(EBC) problems in EC data due to the systematic biases in 
instruments, energy sources not considered and losses of tur-
bulent fluxes at high and low frequencies (Twine et al. 2000; 
Anderson et al. 2008; Tang et al. 2013). A common approach 
to correct the error is to maintain a constant Bowen-ratio (β) 
when closing the energy balance (Twine et al. 2000; Wilson 
et al., 2002; Costa et al. 2010). Thus, the EBC can be forced 
by using:

where H and LE are the sensible and the latent heat flux, 
respectively (W  m−2), and Rn is the surface net radiation 
(W  m−2). Because there is no consensus about reconciling 
the surface energy imbalance measured by the EC system 
(Tang et al. 2013), the daily comparisons from satellite data 
with in situ EC measurements were performed both with and 
without EBC. To obtain the in situ daily ET (ET in situ with 
EBC), the corrected LE (LEEBC) in units of W  m−2 was con-
verted to mm/day using the factor 0.0353. We assessed flux 
data between 2014 and 2019, which included only dates with 
no clouds over the study site mask. Furthermore, only days 
with less than 2 h missing LE and H data in situ were con-
sidered when Landsat-8 OLI/TIRS products were available. 
These gaps were filled using a simple interpolation method.

3.2.2  Reanalysis data

Uncertainties of coarse reanalysis data may impact the 
quality of the derived ET (Vinukollu et al. 2011; Badgley 
et al. 2015). To evaluate the meteorological inputs for the 
model, we were acquired from the ECMWF ERA5 rea-
nalysis dataset (Hersbach 2016). The product represents 
the fifth ECMWF reanalysis generation for the global cli-
mate and weather and was obtained at a spatial resolution 
of 0.25° × 0.25° and hourly temporal resolution. The inputs 
employed included hourly the average of Rs and Rld between 
13:00 and 14:00 a.m. GMT time in order to match it with the 
satellite overpass. To obtain daily values, the hourly ERA5 

(8)� =
H

LE

(9)HEBC =
�(Rn − G)

1 + �

(10)LEEBC =
Rn − G

1 + �
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data were posteriorly converted through the method previ-
ously mentioned (see 2.3.1).

3.2.3  Landsat data

The Landsat program has the longest record of Earth obser-
vation from space (Pahlevan et al. 2014), providing a 40-year 
mission of acquiring global, moderate resolution images of 
the Earth’s surface every 16 days (Barsi et al. 2014; Ke et al. 
2015). One of the most relevant products derived from the 
analysis of a combination of the Landsat visible/near-infra-
red (NIR) and thermal infrared (TIR) bands is the measure 
of the ET (Reuter et al. 2015). Landsat 8 satellite is the latest 
member of Landsat family and carries two sensors, the oper-
ational land imager (OLI) and the thermal infrared sensor 
(TIRS). OLI collects data at a 30-m spatial resolution with 
eight bands located in the visible, NIR, and in the shortwave 
infrared regions of the electromagnetic spectrum, whereas 
TIRS measures the thermal radiance at 100 m spatial reso-
lution using two bands located in the atmospheric window 
between 10 and 12 μm.

For the previous satellites (Landsat 4, Landsat 5, and 
Landsat 7), there was only one TIR channel. Landsat 8 
launch in 2013 was a valuable innovation once its two ther-
mal channels and very high sensitivity allow the applica-
tion of the widely known split-window (SW) algorithm to 
retrieve LST (Jiménez-Muñoz et al. 2014) thus providing 
an opportunity to assess the climate–terrestrial interactions 
through combinations of both thermal and vegetation remote 
sensing (Webster et al. 2016). We acquired twenty-eighth 
Landsat 8 scenes (between 2014 and 2019) with clear-sky 
conditions over the study area from the US Geological Sur-
vey website in level 1 (L1) product. Landsat L1 data are 
radiometric, geometric, and terrain-corrected.

To obtain the normalized difference vegetation index 
(NDVI) and albedo, Landsat 8 OLI surface reflectance prod-
uct was also downloaded from the Landsat Data collection. 
These products are generated at the earth resources obser-
vation and science (EROS). The EROS science processing 
architecture (ESPA) on-demand interface corrects satellite 
images for atmospheric effects to create level 2 data prod-
ucts. The data are generated from the land surface reflec-
tance code (LaSRC) that uses a unique radiative transfer 
model (Vermote et al. 2016).

3.3  Performance metrics

The image processing was automated through the develop-
ment of the algorithms in interactive data language (IDL). 
Ground validation was carried out for the pixel where the 
tower flux is located (Fig. 2). The criteria employed to assess 
the performances of the flux estimates were the coefficient of 
correlation (R), root mean square error (RMSE), and mean 

absolute error (MAE). The RMSE is defined by the square 
root of the sum of the variances and describes the accuracy 
of estimations, which given as:

where Pi is a predicted/simulated value, Oi is an observed 
value, and n is the number of observations. The MAE is the 
average of the absolute difference between the predictions 
and the observations, defined as:

4  Results and discussion

4.1  Uncertainties of ERA5 reanalysis data

Measurements of energy radiative fluxes are essential in 
assessing theoretical treatments of radiative transfer in the 
atmosphere. ET models usually demonstrate different behav-
ior depending on the meteorological input data used (Badg-
ley et al. 2015). In this section, we evaluated the agreement 
of ERA5 meteorological reanalysis with the in situ Rs and 
Rld measured at the flux tower at the Landsat 8 overpass 
time (Fig. 3).

Rs determines the surface radiative energy balance during 
the daytime, and significant uncertainties have been reported 
in its global reanalysis products, which are usually related 
to the modeling schemes used in the reanalysis systems (Yi 
et al. 2011). Rs followed an apparent seasonal pattern, with 
higher values in warmer seasons and lower in the colder 
ones, which is directly related to the seasonal difference of 
solar azimuth angle (Moriwaki and Kanda 2004).

In general, the errors have a similar range during all 
seasons in which it was found that ERA5 product under-
estimated the Rs, with RMSE of 69.80 W  m−2 and MAE 
of 62.37 W  m−2 (Fig. 3a). Opposite results were found by 
Tall et al. (2019) that reported that Rs from ERA5 tended 
to be overestimated particularly during monsoon time over 
Western Africa.. Even though, the authors highlighted that 
ERA5 product has extensive changes compared to the previ-
ous product ERA-Interim (such as higher spatial and tem-
poral resolutions and a generally improved representation), 
because the bias was slightly reduced in that case. Urraca 
et al. (2018) also compared estimates from ERA5 and ERA-
interim products and observed better Rs results with ERA5.

Rdl from ERA5 relative to in situ data was also underes-
timated, but exhibited a less characteristic seasonal pattern 
compared to Rs. In general, the underestimations are simi-
larly distributed through the year, with RMSE and MAE of 

(11)RMSE =

�

1

n

∑n

i=1
(Pi − Oi)2

(12)MAE =
1

n

∑n

i=1
|Pi − Oi|
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29.11 W  m−2 and 28.46 W  m−2, respectively (Fig. 3b). It 
is already documented that the measurement of Rdl can be 
dubious (Sugita and Brutsaert 1993; Duarte et al. 2006), 
mainly because it is greatly influenced by the cloud cover-
age and water vapor content. In other words, a low ratio of 
Rs at the surface to clear-sky solar radiation indicates the 
occurrence of clouds, which also means greater Rdl (Yao 
et al. 2014).

4.2  Comparison of instantaneous surface energy 
components

Figure 4 illustrates the comparisons of instantaneous G, Rn 
and LE estimated from the S-SEBI model (S-SEBIERA5 and 
S-SEBIin situ) against ground measurements obtained from 
EC data. The tower footprint was utilized to evaluate the 
performance of the model in comparison to the in situ data 
at the Landsat 8 overpass.

G component relative to in  situ data was overesti-
mated by both satellite-based measurements (S-SEBI-
ERA5 and S-SEBIin situ), and generated very similar cor-
relations. Nonetheless, RMSE and MAE were found to 
be higher when G was obtained using in situ parameters 
(S-SEBIin situ) and produced 54.73 and 52.65, respectively. 
For S-SEBIERA5, RMSE, and MAE had values of 47.40 
and 45.11, respectively. In addition, it should be noted 
that G in situ from EC measurements has very low val-
ues, reaching negative values in colder periods. Limita-
tions of the empirical formulation used to calculate G 
from satellite observations were already mentioned in the 
literature (Allies et al. 2020; Käfer et al. 2020). The G 
component is commonly sensitive to changes in vegeta-
tion cover because as vegetation grows and shades the 
surface, less incoming solar energy can reach the ground, 
attenuating the temperature transfer to the soil (Yang et al. 
1999; Zimmer et al. 2020). Especially in the Pampa biome, 

Fig. 3  Comparative analysis of the 13:00–14:00 h (GMT time) hourly average of a downward shortwave radiation (Rs) and b downward long-
wave radiation (Rld) between ERA5 product and in situ measurements

Fig. 4  Comparative analysis of the instantaneous fluxes a soil heat flux (G), b radiation net (Rn), and c latent heat flux (LE) between satellite 
measurements (S-SEBIERA5 and S-SEBIin situ) and field measurements (fluxes in situ)
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cattle production is associated with the conservation of 
the grasslands (Oliveira et al. 2017) as part of its natural 
ecosystem. Therefore, besides the climatic seasonality, 
the Pampa biomass is directly influenced by the different 
forms of grazing management to which it is subjected.

The biomass is significantly low in winter when there 
is less solar radiation available, which clearly affects the 
components used to calculate G and it results in low val-
ues. In addition to LST and albedo, Rn is also required in 
G calculation from remote sensing and this component is 
dependent on Rs and Rdl. As the sum of the incoming and 
outcoming shortwave and longwave radiations, Rn typi-
cally achieves its maximum values in summer and mini-
mum in winter (Kofroňová et al. 2019). Rn had a strong 
correlation for both S-SEBIERA5 and S-SEBIin situ with 
values of 0.929 and 0.944, respectively. RMSE and MAE 
were considerably lower when S-SEBI was running with 
in situ values (S-SEBIin situ), producing 42.48 and 22.65, 
respectively. On the other hand, for S-SEBIERA5 both met-
rics are higher, resulting in 96.31 and 89.01, respectively. 
These results demonstrate that even considering a more 

accurate Rn, a worse G is produced by the model. In other 
words, G formulation (Eq. 4) is not really sensitive to the 
Rn component, and consequently, Rs and Rdl (Table 1).

LE had correlation coefficients of 0.629 and 0.601 for 
S-SEBIERA5 and S-SEBIin situ, respectively. RMSE and 
MAE were also higher for S-SEBI carried out with in situ 
data (S-SEBIin situ), exhibiting values of 93.92 and 77.41 
for S-SEBIERA5 and 118.47 and 101.55 for S-SEBIin situ. 
These results are in accordance with other studies per-
formed in the Brazilian Pampa (Schirmbeck et al. 2018; 
Rocha et al. 2020) and suggest that the instantaneous LE 
from S-SEBI model can be more affected by other factors 
(such as the Λ, obtained from remote sensing through the 
Eq. 6) than G or Rn, which will be discussed in the next 
section.

4.3  Comparison of daily estimates

The S-SEBI model assumes that Λ is stable during the day-
time, which is used as a basis to convert the surface energy 
fluxes from instantaneous to daily (Brutsaert and Sugita, 
1992). We compared the Λ estimated by S-SEBI with Λ 
obtained in situ considering both scenarios with and without 
EBC (Fig. 5). Λ in situ was determined from EC measure-
ments by using its general formulation:

According to Zhang and Lemeur (1995), the concept of Λ 
cannot be valid under non-clear sky conditions because the 
diurnal constancy of Λ may not be fulfilled under cloudy cir-
cumstances. Despite the two correlations are weak, regres-
sion analysis showed that Λ is much more correlated with 
ET in situ when EBC is performed. It indicates that even 

(13)Λ =
LE

Rn − G

Fig. 5  Comparative analysis of the in situ evaporative fraction (Λ) a with and b without energy balance closure (EBC) against Λ estimated by 
S-SEBI model

Table 1  Performance metrics for the modeled energy fluxes using 
S-SEBI with ERA5 and in situ data. r is the coefficient of correlation 
(–), RMSE refers to the root-mean-square error (W  m−2); and MAE 
refers to the mean absolute error (W  m−2)

Component R RMSE MAE

GERA5 0.746 47.40 45.11
RnERA5 0.929 96.31 89.01
LEERA5 0.629 93.92 77.41
Gin situ 0.645 54.73 52.65
Rnin situ 0.944 42.48 22.65
LEin situ 0.601 118.47 101.55
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if the EBC is not properly achieved, using EC data with 
EBC as ground truth produces better estimates. Zahira et al. 
(2009) pointed out that errors in the determination of  TH 
and  TLE lines, and consequently in Λ (Eq. 6), impact the 
estimation of LE. Although the use of the relative diagram 
LST–albedo to estimate the evaporative regimes can be 
considered a potential strength of the S-SEBI (Mattar et al. 
2014), it requires enough wet and dry pixels in the scene for 
hydrological contrast. Hence, in areas where the relationship 
is not well correlated, a more sophisticated algorithm may 
be necessary.

The LST is very important in diagnosing many of the 
major surface energy balance components, including sen-
sible heat, net radiation, and soil heat flux (Anderson et al., 
2012). LST-dependent models assume that ET can cool land 
surfaces under the condition of homogeneous atmospheric 
forcing (Sun et al. 2016). Overall, retrieving LST from sat-
ellite data with high accuracy has been a research problem 
at least in the last three decades, especially because of the 
effects introduced by the atmosphere in the thermal infra-
red region that must be corrected (Qin et al. 2001; Sobrino 
et al. 2005; Tardy et al. 2016); otherwise, they may affect the 
accuracy of both H and LE. Uncertainties in LST retrieval 
algorithms are generally related to the high w content in 
the atmosphere, and most of them tend to perform badly 
under conditions of w > 3 g.cm−2 (Prata, 1994). However, 
the SW algorithm is able to perform well even in condi-
tions of high-water vapor, as reported by several research-
ers (Jiménez-Muñoz et al. 2014; Yu et al. 2014), which 
ensures the reliability of the methodology employed. Lit-
tle has been discussed about the effects of LST accuracy 

in the ET estimations. Particularly over the Pampa, Rocha 
et al. (2020) studied the LST influence in the S-SEBI model 
between 2015 and 2019 and found that an error of up to 2 K 
in the LST produces an average variation of 0.18 mm/day. 
Consequently, the authors concluded that LST itself does not 
actually influence the average of the retrieved ET (see Rocha 
et al. (2020) for more extensive discussion).

Besides being the dominant controlling factor of climate 
and hydrology, ET is one of the main fluxes in the global 
water cycle. Figure 6 depicts the comparison between daily 
ET between satellite-based measurements derived from the 
S-SEBI model (S-SEBIERA5 and S-SEBIin situ) against field 
measurements with and without the EBC. Coefficient of cor-
relation was high for both S-SEBIERA5 and S-SEBIin situ when 
compared to in situ data considering EBC (Fig. 6a). On the 
other hand, when contrasted with in situ data without EBC, 
the correlation did not show significant variations between 
S-SEBIERA5 and S-SEBIin situ.

RMSE and MAE had superior agreement with in situ 
data with EBC than without it, producing 1.38 and 1.12 
for S-SEBIERA5 and 1.06 and 0.79 for S-SEBIin situ, respec-
tively. In contrast, when considering EC data without EBC 
as ground truth, the values found were 1.71 and 1.30 for 
S-SEBIERA5 and 1.44 and 1.06 for S-SEBIin situ, respectively. 
Furthermore, these performance metrics are notably more 
sensitive to the components than the coefficient of correla-
tion which did not show much differences. The results found 
are in agreement with other validation exercises reported 
in the literature for the S-SEBI model (Roerink et al. 2000; 
Gomez et al. 2005; Verstraeten et al. 2005; Sobrino et al. 
2007; Galleguillos et al. 2011; Käfer et al. 2020). In this 

Fig. 6  Comparative analysis of the daily evapotranspiration (ET) between satellite measurements (S-SEBIERA5 and S-SEBIin situ) and field meas-
urements a with and b without energy balance closure (EBC)
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context, the Pampa grasslands do not behave so differently 
from other vegetation types in terms of accuracy of the final 
daily ET.

Assuming EC data with EBC as ground truth, the RMSE 
of the daily ET is impacted in 0.32 mm/day if ERA5 radia-
tion data are used instead of in situ ones. It indicates that 
the radiation components (Rs and Rdl) may play a smaller 
role in the S-SEBI model. These variations are even less 
pronounced when EC data without EBC are considered as 
ground truth, which are affected in 0.27 mm/day. In gen-
eral, the use of in situ or ERA5 data as meteorological 
inputs have low sensitivity on S-SEBI model accuracy to 
estimate the daily ET over the Brazilian Pampa. Moreover, 
the results may suggest that when the satellite observations 
are compared against EC data without EBC, the fact of 
using reanalysis or in situ radiation data tends to have even 
lower influence in the daily ET. These findings may be help-
ful in situations where some of the in situ energy balance 

components are missing or are not trustable enough to per-
form a proper EBC (Table 2).

Transpiration, soil evaporation, and interception evapo-
ration components are frequently embedded within remote 
sensing-based ET models. However, comparisons have 
demonstrated that although the total evaporative flux from 
different models agrees relatively well, the different com-
ponents diverge substantially (Talsma et al. 2018). Even 
with an instantaneous G and consequently LE less accurate 
for S-SEBIin situ in comparison to S-SEBIERA5, the use of Λ 
together with the method used for extrapolating from instan-
taneous to daily (Sobrino et al. 2007), clearly contributes to 
produce more reliable daily ET estimates. Upscaling meth-
ods of instantaneous ET to daily ET usually have their own 
bias (Singh and Senay 2015) and variation depending upon 
seasonality and cloud conditions. The temporal scaling is 
usually a weakness of remotely sensed data (Zahira et al. 
2009); nevertheless, using radiation data (either from rea-
nalysis or in situ) for this transformation increases the accu-
racy of the estimates, especially because the global radiation 
behavior throughout the day is considered.

4.4  Seasonal and spatial pattern of ET

Figure  7 shows the seasonal variation of the daily ET 
between both satellite-based measurements (S-SEBIERA5 
and S-SEBIin situ) and field EC data with and without EBC. 
The daily ET followed a seasonal behavior with the highest 
values in the summer, period of fast growing for vegeta-
tion, and lowest in winter due to the cold weather. Over the 
Pampa, the ET is marked by strong seasonality, because it 
is highly dominated by precipitation rates, which directly 
affect the partitioning of the turbulent flux (Rubert et al. 
2018). Overall, estimates from S-SEBIin situ fitted better in 
comparison to field data with and without EBC than the 
ones from S-SEBIERA5. ET from S-SEBIERA5 was under-
estimated in most cases, but generally in warmer periods, 
it tended to have better accordance, especially when in situ 
data with EBC are considered as ground truth. Commonly 
in the Pampa biome, during cold periods, the small growth 
of the natural grasslands is very difficult to detect by satel-
lite imagery because all of the biomass production is being 
consumed by cattle in a situation named overgrazing, which 
occurs when the consumption of biomass is larger than the 
aboveground net primary production of the vegetation uti-
lized to feed the animals (Scottá and Fonseca 2015).

Differences between curves with and without EBC evi-
denced that measurements with EBC can better capture the 
variations of the ET seasonal pattern in the natural grass-
lands of the Pampa biome. Most variations found between 
ET in situ with and without EBC are seen in late winter 
and spring seasons, which are noticeable in the DOYs of 
202, 266, 278, 282, and 331 (Fig. 7), demonstrating that 

Fig. 7  Seasonal pattern of the daily evapotranspiration (ET) between 
satellite measurements (S-SEBIERA5 and S-SEBIin situ) and field meas-
urements with (solid line) and without (dashed line) energy balance 
closure (EBC)

Table 2  Performance metrics for the modeled daily ET using S-SEBI 
with ERA5 and in situ parameters. r is the coefficient of correlation 
(–), RMSE refers to the root-mean-square error (mm∕day); and MAE 
refers to the mean absolute error (mm/day)

* Refers to the ET compared with EBC

Component R RMSE MAE

*ETERA5 0.834 1.38 1.12
ETERA5 0.700 1.71 1.30
*ETin situ 0.840 1.06 0.79
ETin situ 0.701 1.44 1.06
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the imbalance issues in EC measurements without EBC 
can become more pronounced in these periods. Rubert 
et al. (2018) reported that the overestimation of ET from 
EC data normally is noticeable in the hydrological regime 
where water availability is the limiting factor. The authors 
mentioned that although the relationship between the ET 
and soil water content depends on soil type, vegetation type, 
and vegetation adaptation to dryness, the role of soil water 
content near the surface is expressive. According to Fontana 

et al. (2018), the general climate condition in the Pampa is 
considered uniform in terms of temporal distribution of rain-
fall throughout the year. However, events such as La Niña 
cause high vegetation water stress. Results indicated that the 
daily ET from remote sensing observations produced better 
agreement with in situ EC data in late winter and spring sea-
sons. On the other hand, late summer and autumn exhibited 
worse estimates. Figure 8 investigates the spatial behavior 
of albedo, LST, Λ, and daily ET for two different DOYs. 

Fig. 8  Spatial pattern of the a 
Albedo (-) b LST (Kelvin) c Λ 
(-) and d daily ET (mm/day) 
of Pampa biome area for the 
DOYs 58 and 278. A mask of 
150 × 120 pixels around the flux 
tower and in situ radiation data 
were utilized
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The DOY 58 represents a day with less accurate daily ET 
estimates in late summer, whereas DOY 278 has better daily 
ET results and is a spring day.

Although DOY 278 exhibited a very accurate daily ET 
estimate, the S-SEBI model underestimated the daily ET 
for both cases (Fig. 8). Differences of 2.26 and 0.2 mm/
day against in situ measurements with EBC, and 3.02 and 
0.52 mm/day in comparison to the in situ measurements 
without EBC, were found in the DOYs 58 and 278, respec-
tively. LST and albedo play key roles in the energy balance. 
Typically, the lower the albedo is, less solar radiation ends 
up being reflected back into space, and more is absorbed 
by the surface, thereby increasing the LST (Findell et al. 
2007). Thus, the ET rate increases with the increase of water 
content in soil due to this lower albedo. It is noticeable that 
in spring when the albedo starts to exhibit higher values the 
opposite is observed. Once the surface reflects more energy 
strongly reducing the LST, the albedo–LST relationship used 
in the S-SEBI can be compromised, directly affecting  TH and 
 TLE definition, and consequently Λ (Eq. 6). Thus, the model 
better represents the pattern of the relationship in spring 
where the higher data accuracy is seen. Despite the general 
behavior and accuracy of the S-SEBI in the Pampa biome 
is not that different from other grassland types, the climate 
condition commanded by the strong seasonality might pre-
vent the suitable operation of the model in specific DOYs 
(such as 58), since it directly influences the relationship that 
is the basis of the model. As the increasing water scarcity 
allies to the ever-growing population has created urgency 
for integrated and sustainable water resources management 
(Haghverdi et al. 2021), this understanding is useful to 
establish conservation strategies over the Pampa in addition 
to monitoring the climate variability and its impact on the 
water resources availability.

5  Conclusions

The Pampa biome carries a rich biodiversity and is con-
sidered priority for conservation. In this context, accurate 
information on the ET dynamics is essential to support its 
proper monitoring. As different remote sensing-based mod-
els for ET estimation have different input data requirements, 
it is fundamental to understand its strength and limitations 
in addition to comprehend the uncertainties of the com-
ponents and their impacts on final ET. Because a detailed 
evaluation of the S-SEBI in retrieving surface fluxes over 
the natural grasslands of the Pampa has not been properly 
addressed, we propose to investigate an operation method-
ology based on the model to estimate the water and energy 
fluxes.

The use of the S-SEBI model in conjunction with 
ERA5 (S-SEBIERA5) radiation data allowed to obtain ET 

over natural grasslands with RMSE and MAE of 1.38 mm/
day and 1.12 mm/day, respectively. In contrast, by using 
in situ radiation data as input (S-SEBIin situ), it produced 
RMSE and MAE of 1.06  mm/day and 0.79  mm/day, 
respectively. Thus, the RMSE is impacted in 0.32 mm/
day when reanalysis data are used to replace in situ radia-
tion data, indicating that meteorological inputs have low 
sensitivity on daily ET estimates by the S-SEBI model. In 
contrast, the instantaneous components are more affected. 
The impact in the daily ET is lower when in situ data 
without EBC are considered as ground truth, despite they 
are less correlated with the remote sensing-based esti-
mates. It can be helpful particularly when in situ energy 
balance components are missing and the EBC cannot be 
properly performed.

Our findings demonstrated that the strong seasonality of 
the region influences the evaporative fraction, which is the 
basis of the S-SEBI. This behavior is more evident in the 
transition between late summer and autumn and may com-
promise the performance of the model. The methodology 
proposed can guide the generation of accurate long-term 
records of ET, since it includes remote sensing products 
that can be easily obtained for different freely available sat-
ellites, such as the Landsat series that provides a continu-
ously acquired collection of data. Moreover, these insights 
are useful to guide future development and application of 
remote sensing-based models over grasslands. Therefore, 
the operational method provides the opportunity to cap-
ture ET trends through the time over the natural grasslands 
of the Brazilian Pampa. Once selecting a model from the 
wide range available to retrieve ET under a given set of 
circumstances is challenging for users, in further work, we 
intend to compare the S-SEBI performance with other SEB 
models.
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