546 research outputs found

    Distinct Responses to Menin Inhibition and Synergy with DOT1L Inhibition in KMT2A-Rearranged Acute Lymphoblastic and Myeloid Leukemia

    Get PDF
    Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.</p

    Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band) connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1), and six months later (t2). At these time points, magnetoencephalography (MEG) was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length.</p> <p>Results</p> <p>At the two time points, MEG registrations were performed in respectively 17 and 12 patients. No changes in connectivity or network topology occurred over time. Increased theta band connectivity at t1 and t2 was related to a higher total number of seizures. Furthermore, higher number of seizures was related to a less optimal, more random brain network topology. Other factors were not significantly related to functional connectivity or network topology.</p> <p>Conclusions</p> <p>These results indicate that (pathologically) increased theta band connectivity is related to a higher number of epileptic seizures in brain tumor patients, suggesting that theta band connectivity changes are a hallmark of tumor-related epilepsy. Furthermore, a more random brain network topology is related to greater vulnerability to seizures. Thus, functional connectivity and brain network architecture may prove to be important parameters of tumor-related epilepsy.</p

    Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network

    Full text link
    The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than later born neurons. This indicates that the longer time frame available to them might underlie high connectivity. Both outcomes are not observed for random connection formation. The study finds that around one-third of electrically coupled long-range connections are late forming, raising the question of what mechanisms are involved in ensuring their accuracy, particularly in light of the extremely invariant connectivity observed in C. elegans. In conclusion, the sequence of neural network development highlights the possibility of early contact or interaction in securing long-distance and high-degree connectivity

    Comparative study of nonlinear properties of EEG signals of a normal person and an epileptic patient

    Get PDF
    Background: Investigation of the functioning of the brain in living systems has been a major effort amongst scientists and medical practitioners. Amongst the various disorder of the brain, epilepsy has drawn the most attention because this disorder can affect the quality of life of a person. In this paper we have reinvestigated the EEGs for normal and epileptic patients using surrogate analysis, probability distribution function and Hurst exponent. Results: Using random shuffled surrogate analysis, we have obtained some of the nonlinear features that was obtained by Andrzejak \textit{et al.} [Phys Rev E 2001, 64:061907], for the epileptic patients during seizure. Probability distribution function shows that the activity of an epileptic brain is nongaussian in nature. Hurst exponent has been shown to be useful to characterize a normal and an epileptic brain and it shows that the epileptic brain is long term anticorrelated whereas, the normal brain is more or less stochastic. Among all the techniques, used here, Hurst exponent is found very useful for characterization different cases. Conclusions: In this article, differences in characteristics for normal subjects with eyes open and closed, epileptic subjects during seizure and seizure free intervals have been shown mainly using Hurst exponent. The H shows that the brain activity of a normal man is uncorrelated in nature whereas, epileptic brain activity shows long range anticorrelation.Comment: Keywords:EEG, epilepsy, Correlation dimension, Surrogate analysis, Hurst exponent. 9 page

    The Brain Matures with Stronger Functional Connectivity and Decreased Randomness of Its Network

    Get PDF
    We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (∼10 Hz), beta (∼20 Hz), and theta (∼4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ∼50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ∼18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain

    Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients

    Get PDF
    Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated. Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks. Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males 73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616 to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to 3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand factor and Fibroblast Growth Factor-23, remained unchanged. Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23. Trial Registration: ClinicalTrials.gov NCT0200571

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    Analytical methods and experimental approaches for electrophysiological studies of brain oscillations

    Get PDF
    Brain oscillations are increasingly the subject of electrophysiological studies probing their role in the functioning and dysfunction of the human brain. In recent years this research area has seen rapid and significant changes in the experimental approaches and analysis methods. This article reviews these developments and provides a structured overview of experimental approaches, spectral analysis techniques and methods to establish relationships between brain oscillations and behaviour

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com
    corecore