106 research outputs found

    Optical‐mode structure of micropillar microcavities containing a fluorescent conjugated polymer

    Get PDF
    The light emission from a series of micropillar microcavities containing a fluorescent, red‐emitting conjugated polymer, is explored. Cavities are fabricated by defining two dielectric mirrors either side of a polymer active region. Focused ion‐beam (FIB) lithography is then used to etch pillar structures into the planar cavity having diameters between 1 and 11 µm. The photoluminescence (PL) emission of the cavities is characterized using real‐space tomographic and Fourier‐space imaging techniques, with emission shown to be quantized into a mode‐structure resulting from both vertical and lateral optical confinement within the pillar. The optical‐confinement effects which result in a blue‐shift of the fundamental mode as the pillar diameter is reduced is demonstrated, with a model applied to describe the energy and distribution of the confined optical modes

    A two-dimensional organic-exciton polariton lattice fabricated using laser patterning

    Get PDF
    Exciton-polaritons in 2D lattice geometries now attract considerable attention as systems in which to explore new physics. However, such structures are relatively difficult to fabricate as this can involve sophisticated milling or etching of cavity layers to create arrays of defects. Here, a straightforward technique is reported that allows rapid fabrication of 2D polariton lattices that operate at room temperature. Specifically, laser patterning has been used to write a 2D square lattice of defects into a sacrificial polymer layer. An organic microcavity structure is then built on top of the patterned polymer, with the morphology of the patterned polymer propagating through the subsequent layers and spatially modifying the optical path-length of the active cavity region. Using real- and momentum-space spectroscopy, the formation of gapped polaritonic band structures has been demonstrated at room temperature. The optical writing approach discussed here opens up the way for fabrication of more complex 2D-lattice geometries for studying topological physics at room temperature

    On the perturbative chiral ring for marginally deformed N=4 SYM theories

    Get PDF
    For \cal{N}=1 SU(N) SYM theories obtained as marginal deformations of the \cal{N}=4 parent theory we study perturbatively some sectors of the chiral ring in the weak coupling regime and for finite N. By exploiting the relation between the definition of chiral ring and the effective superpotential we develop a procedure which allows us to easily determine protected chiral operators up to n loops once the superpotential has been computed up to (n-1) order. In particular, for the Lunin-Maldacena beta-deformed theory we determine the quantum structure of a large class of operators up to three loops. We extend our procedure to more general Leigh-Strassler deformations whose chiral ring is not fully understood yet and determine the weight-two and weight-three sectors up to two loops. We use our results to infer general properties of the chiral ring.Comment: LaTex, 40 pages, 4 figures, uses JHEP3; v2: minor correction

    Scattering in Mass-Deformed N>=4 Chern-Simons Models

    Full text link
    We investigate the scattering matrix in mass-deformed N>=4 Chern-Simons models including as special cases the BLG and ABJM theories of multiple M2 branes. Curiously the structure of this scattering matrix in three spacetime dimensions is equivalent to (a) the two-dimensional worldsheet matrix found in the context of AdS/CFT integrability and (b) the R-matrix of the one-dimensional Hubbard model. The underlying reason is that all three models are based on an extension of the psu(2|2) superalgebra which constrains the matrix completely. We also compute scattering amplitudes in one-loop field theory and find perfect agreement with scattering unitarity.Comment: 63 pages, v2: minor corrections, v3: minor improvement

    Integrable twists in AdS/CFT

    Get PDF
    A class of marginal deformations of four-dimensional N=4 super Yang-Mills theory has been found to correspond to a set of smooth, multiparameter deformations of the S^5 target subspace in the holographic dual on AdS_5 x S^5. We present here an analogous set of deformations that act on global toroidal isometries in the AdS_5 subspace. Remarkably, certain sectors of the string theory remain classically integrable in this larger class of so-called gamma-deformed AdS_5 x S^5 backgrounds. Relying on studies of deformed su(2)_gamma models, we formulate a local sl(2)_gamma Lax representation that admits a classical, thermodynamic Bethe equation (based on the Riemann-Hilbert interpretation of Bethe's ansatz) encoding the spectrum in the deformed AdS_5 geometry. This result is extended to a set of discretized, asymptotic Bethe equations for the twisted string theory. Near-pp-wave energy spectra within sl(2)_gamma and su(2)_gamma sectors provide a useful and stringent test of such equations, demonstrating the reliability of this technology in a wider class of string backgrounds. In addition, we study a twisted Hubbard model that yields certain predictions of the dual beta-deformed gauge theory.Comment: v2: references and clarifications added, 46 page

    A hybrid organic–inorganic polariton LED

    Get PDF
    Polaritons are quasi-particles composed of a superposition of excitons and photons that can be created within a strongly coupled optical microcavity. Here, we describe a structure in which a strongly coupled microcavity containing an organic semiconductor is coupled to a second microcavity containing a series of weakly coupled inorganic quantum wells. We show that optical hybridisation occurs between the optical modes of the two cavities, creating a delocalised polaritonic state. By electrically injecting electron–hole pairs into the inorganic quantum-well system, we are able to transfer energy between the cavities and populate organic-exciton polaritons. Our approach represents a new strategy to create highly efficient devices for emerging ‘polaritonic’ technologies

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore