155 research outputs found

    A novel procedure for fast surface structural analysis based on LEED intensity data

    Get PDF
    By evaluating LEED intensities from different diffraction beams taken only at discrete energy intervals (which may be as large as 15–20 eV) the same degree of reliability in surface structure determination can be reached as with the conventional techniques based on analysis of continuous I/V-spectra. The minimum of the corresponding R-factor can be found by a least-squares fit method, as will be exemplified with a system in which 8 structural parameters were subject to simultaneous refinement

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Lattice Dynamics and the High Pressure Equation of State of Au

    Full text link
    Elastic constants and zone-boundary phonon frequencies of gold are calculated by total energy electronic structure methods to twofold compression. A generalized force constant model is used to interpolate throughout the Brillouin zone and evaluate moments of the phonon distribution. The moments are used to calculate the volume dependence of the Gruneisen parameter in the fcc solid. Using these results with ultrasonic and shock data, we formulate the complete free energy for solid Au. This free energy is given as a set of closed form expressions, which are valid to compressions of at least V/V_0 = 0.65 and temperatures up to melting. Beyond this density, the Hugoniot enters the solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are discussed within an approximate model. We compare with proposed standards for the equation of state to pressures of ~200 GPa. Our result for the room temperature isotherm is in very good agreement with an earlier standard of Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.

    Photon interferometry and size of the hot zone in relativistic heavy ion collisions

    Full text link
    The parameters obtained from the theoretical analysis of the single photon spectra observed by the WA98 collaboration at SPS energies have been used to evaluate the two photon correlation functions. The single photon spectra and the two photon correlations at RHIC energies have also been evaluated, taking into account the effects of the possible spectral change of hadrons in a thermal bath. We find that the ratio Rside/Rout1R_{side}/R_{out} \sim 1 for SPS and Rside/Rout<1R_{side}/R_{out} <1 for RHIC energy.Comment: text changed, figures adde

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (10910.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    In-beam γ-ray spectroscopy of 172Pt

    Get PDF
    Collective structures in 172Pt have been investigated by measuring in-beam γ rays with mass selection and the recoil-decay tagging technique. The discrepancy in the ground-state band from previous studies has been resolved, and a new collective structure that is likely based on an octupole vibration has been identified. A band mixing model is used to determine the properties of the competing near-spherical and deformed ground-state sequences in the light Os-Pt-Hg-Pb region. Evidence for a reduction of deformation in the deformed vacuum structure below N=98 is presented

    The 44Ti(α, p) reaction and its implication on the 44Ti yield in supernovae

    Get PDF
    Cross sections for the 44Ti(α, p)47V reaction which significantly affects the yield of 44Ti in supernovae were measured in the energy range 5.7MeV ≤ Ec.m. ≤ 9 MeV, using a beam of radioactive 44Ti. The cross sections and the deduced astrophysical reaction rates are larger than the results from theoretical calculations by about a factor of 2. The implications of this increase in the reaction rate for the search of supernovae using space-based gamma detectors are discussed

    Crystal Structure of the Hendra Virus Attachment G Glycoprotein Bound to a Potent Cross-Reactive Neutralizing Human Monoclonal Antibody

    Get PDF
    The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines
    corecore