223 research outputs found
Determination of superconducting anisotropy from magnetization data on random powders as applied to LuNiBC, YNiBC and MgB
The recently discovered intermetallic superconductor MgB2 appears to have a
highly anisotopic upper critical field with Hc2(max)/Hc2(min} = \gamma > 5. In
order to determine the temperature dependence of both Hc2(max) and Hc2(min) we
propose a method of extracting the superconducting anisotropy from the
magnetization M(H,T) of randomly oriented powder samples. The method is based
on two features in dM/dT the onset of diamagnetism at Tc(max), that is commonly
associated with Hc2, and a kink in dM/dT at a lower temperature Tc(min).
Results for LuNi2B2C and YNi2B2C powders are in agreement with anisotropic Hc2
obtained from magneto-transport measurements on single crystals. Using this
method on four different types of MgB2 powder samples we are able to determine
Hc2(max)(T) and Hc2(min)(T) with \gamma \approx 6
Superconducting anisotropy and evidence for intrinsic pinning in single crystalline MgB
We examine the superconducting anisotropy
of a metallic high- superconductor MgB by measuring the magnetic
torque of a single crystal. The anisotropy does not depend
sensitively on the applied magnetic field at 10 K. We obtain the anisotropy
parameter . The torque curve shows the sharp
hysteresis peak when the field is applied parallel to the boron layers. This
comes from the intrinsic pinning and is experimental evidence for the
occurrence of superconductivity in the boron layers.Comment: REVTeX 4, To be published in Physical Review
A comparative study of high-field diamagnetic fluctuations in deoxygenated YBa2Cu3O(7-x) and polycrystalline (Bi-Pb)2Sr2Ca3O(10)
We studied three single crystals of YBa2Cu3O{7-x} with Tc= 62.5, 52, and 41
K, and a textured specimen of (Bi-Pb)2Sr2Ca2Cu3O10 with Tc=108 K, for H//c
axis. The reversible data were interpreted in terms of 2D lowest-Landau-level
fluctuation theory. The data were fit well by the 2D LLL expression for
magnetization obtained by Tesanovic etal., producing reasonable values of kappa
but larger values of dHc2/dT. Universality was studied by obtaining a
simultaneous scaling of Y123 data and Bi2223. An expression for the 2D x-axis
LLL scaling factor used to obtain the simultaneous scaling was extracted from
theory, and compared with the experimental values. The comparison between the
values of the x-axis produced a deviation of 40% which suggests that the
hypothesis of universality of the 2D-LLL fluctuations is not supported by the
studied samples. We finaly observe that Y123 magnetization data for
temperatures above obbey a universal scaling obtained for the diamagnetic
fluctuation magnetization from a theory considering non-local field effects.
The same scaling was not obbeyed by the corresponding magnetization calculated
from the two-dimensional lowest-Landau-level theory.Comment: 7 pages 5 figures, accept in Journ. Low Temp. Phy
Superconducting fluctuation corrections to ultrasound attenuation in layered superconductors
We consider the temperature dependence of the sound attenuation and sound
velocity in layered impure metals due to superconducting fluctuations of the
order parameter above the critical temperature. We obtain the dependence on
material properties of these fluctuation corrections in the hydrodynamic limit,
where the electron mean free path is much smaller than the wavelength of sound
and where the electron collision rate is much larger than the sound frequency.
For longitudinal sound propagating perpendicular to the layers, the open Fermi
surface condition leads to a suppression of the divergent contributions to
leading order, in contrast with the case of paraconductivity. The leading
temperature dependent corrections, given by the Aslamazov-Larkin, Maki-Thompson
and density of states terms, remain finite as T->Tc. Nevertheless, the
sensitivity of new ultrasonic experiments on layered organic conductors should
make these fluctuations effects measurable.Comment: 13 pages, 6 figures. Accepted for PRB. Added discussion on incoherent
interlayer tunneling and other small modifications suggested by referee
The irreversibility line of overdoped Bi_{2+x}Sr_{2-(x+y)}Cu_{1+y}O_{6 +- delta} at ultra-low temperatures and high magnetic fields
The irreversible magnetization of the layered high-T_{c} superconductor
Bi_{2+x}Sr_{2-(x+y)}Cu_{1+y}O_{6 +- delta} (Bi-2201) has been measured by means
of a capacitive torquemeter up to B=28 T and down to T=60 mK. No magnetization
jumps, peak effects or crossovers between different pinning mechanisms appear
to be present. The deduced irreversibility field B_{irr} can not be described
by the law B_{irr}(T)=B_{irr}(0)(1-T/T_{c})^n based on flux creep, but an
excellent agreement is found with the analytical form of the melting line of
the flux lattice as calculated from the Lindemann criterion. The behavior of
B_{irr}(T) obtained here is very similar to the resistive critical field of a
Bi-2201 thin film, suggesting that magnetoresistive experiments are likely to
be strongly influenced by flux lattice melting.Comment: 4 pages, 4 eps figure
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Matching and surface barrier effects of the flux-line lattice in superconducting films and multilayers.
The flux-line lattice dissipation and the pinning force of Bi2Sr2CaCu2O8 and YBa2Cu3O7 films and a Nb/Cu multilayer are investigated with the vibrating reed technique. In magnetic fields oriented under a small angle with respect to the film surfaces the Bi-2:2:1:2 film shows a series of pronounced dissipation maxima at matching fields BN in the irreversible region of the magnetic phase diagram. The Y-1:2:3 film shows tiny damping maxima, whereas no structure in the dissipation of the Nb/Cu multilayer is detected below the upper critical field. The comparison of the matching fields to an anisotropic London model shows that the dissipation maxima are caused by rearrangements of the flux-line lattice configuration due to interactions with the sample surface. The different behavior of the high-temperature superconductors and the Nb/Cu multilayer is understood by explicitly taking the surface barrier into account. Deviations from the surface induced commensurability of the flux-line lattice due to the intrinsic pinning are discussed. Our results indicate that pancake vortices in the Bi-2:2:1:2 film should be coupled below the irreversibility line and below magnetic fields B??0.5 T perpendicular to the film surface
- âŠ