2,270 research outputs found

    Long term extension of a randomised controlled trial of probiotics using electronic health records

    Get PDF
    Most randomised controlled trials (RCTs) are relatively short term and, due to costs and available resources, have limited opportunity to be re-visited or extended. There is no guarantee that effects of treatments remain unchanged beyond the study. Here, we illustrate the feasibility, benefits and cost-effectiveness of enriching standard trial design with electronic follow up. We completed a 5-year electronic follow up of a RCT investigating the impact of probiotics on asthma and eczema in children born 2005-2007, with traditional fieldwork follow up to two years. Participants and trial outcomes were identified and analysed after five years using secure, routine, anonymised, person-based electronic health service databanks. At two years, we identified 93% of participants and compared fieldwork with electronic health records, highlighting areas of agreement and disagreement. Retention of children from lower socio-economic groups was improved, reducing volunteer bias. At 5 years we identified a reduced 82% of participants. These data allowed the trial's first robust analysis of asthma endpoints. We found no indication that probiotic supplementation to pregnant mothers and infants protected against asthma or eczema at 5 years. Continued longer-term follow up is technically straightforward

    Determinants of subject visit participation in a prospective cohort study of HTLV infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding participation in a prospective study is crucial to maintaining and improving retention rates. In 1990–92, following attempted blood donation at five blood centers, we enrolled 155 HTLV-I, 387 HTLV-II and 799 HTLV seronegative persons in a long-term prospective cohort.</p> <p>Methods</p> <p>Health questionnaires and physical exams were administered at enrollment and 2-year intervals through 2004. To examine factors influencing attendance at study visits of the cohort participants we calculated odds ratios (ORs) with generalized estimated equations (GEE) to analyze fixed and time-varying predictors of study visit participation.</p> <p>Results</p> <p>There were significant independent associations between better visit attendance and female gender (OR = 1.31), graduate education (OR = 1.86) and income > 75,000(OR=2.68).Participantsattwocenters(OR=0.47,0.67)andofBlackrace/ethnicity(OR=0.61)werelesslikelytocontinue.Highersubjectreimbursementforinterviewwasassociatedwithbettervisitattendance(OR=1.84for75,000 (OR = 2.68). Participants at two centers (OR = 0.47, 0.67) and of Black race/ethnicity (OR = 0.61) were less likely to continue. Higher subject reimbursement for interview was associated with better visit attendance (OR = 1.84 for 25 vs. $10). None of the health related variables (HTLV status, perceived health status and referral to specialty diagnostic exam for potential adverse health outcomes) significantly affected participation after controlling for demographic variables.</p> <p>Conclusion</p> <p>Increasing and maintaining participation by minority and lower socioeconomic status participants is an ongoing challenge in the study of chronic disease outcomes. Future studies should include methods to evaluate attrition and retention, in addition to primary study outcomes, including qualitative analysis of reasons for participation or withdrawal.</p

    Bifidobacterium animalis AHC7 protects against pathogen-induced NF-κB activation in vivo

    Get PDF
    BACKGROUND: Bifidobacteria and lactobacilli are among the early and important colonizers of the gastrointestinal tract and are generally considered to be part of a normal, healthy microbiota. It is believed that specific strains within the microbiota can influence host immune-reactivity and may play a role in protection from infection and aberrant inflammatory activity. One such strain, Bifidobacterium animalis AHC7, has been previously shown to protect against Salmonella typhimurium infection in mice and helps resolve acute idiopathic diarrhea in dogs. The aim of this study was to investigate the potential molecular and cellular mechanisms underpinning the Bifidobacterium animalis AHC7 protective effect. RESULTS: Following 4 hours of infection with Salmonella typhimurium, NF-κB activation was significantly elevated in vivo in placebo and Enterococcus faecium-fed animals while Bifidobacterium animalis AHC7 consumption significantly attenuated the NF-κB response. In vitro anti-CD3/CD28 stimulated Peyer's patch cells secreted significantly less TNF-α and IFN-γ following Bifidobacterium animalis AHC7 consumption. Stimulated cells released more IL-12p70 but this difference did not reach statistical significance. No alteration in mucosal IL-6, IL-10 or MCP-1 levels were observed. No statistically significant change in the cytokine profile of mesenteric lymph node cells was noted. In vitro, Bifidobacterium animalis AHC7 was bound by dendritic cells and induced secretion of both IL-10 and IL-12p70. In addition, co-culture of CD4+ T cells with Bifidobacterium animalis AHC7-stimulated dendritic cells resulted in a significant increase in CD25+Foxp3+ T cell numbers. CONCLUSION: Bifidobacterium animalis AHC7 exerts an anti-inflammatory effect via the attenuation of pro-inflammatory transcription factor activation in response to an infectious insult associated with modulation of pro-inflammatory cytokine production within the mucosa. The cellular mechanism underpinning Bifidobacterium animalis AHC7 mediated attenuation of NF-κB activation may include recognition of the bacterium by dendritic cells and induction of CD25+Foxp3+ T cells

    Environmental and genetic influences on early attachment

    Get PDF
    Attachment theory predicts and subsequent empirical research has amply demonstrated that individual variations in patterns of early attachment behaviour are primarily influenced by differences in sensitive responsiveness of caregivers. However, meta-analyses have shown that parenting behaviour accounts for about one third of the variance in attachment security or disorganisation. The exclusively environmental explanation has been challenged by results demonstrating some, albeit inconclusive, evidence of the effect of infant temperament. In this paper, after reviewing briefly the well-demonstrated familial and wider environmental influences, the evidence is reviewed for genetic and gene-environment interaction effects on developing early attachment relationships. Studies investigating the interaction of genes of monoamine neurotransmission with parenting environment in the course of early relationship development suggest that children's differential susceptibility to the rearing environment depends partly on genetic differences. In addition to the overview of environmental and genetic contributions to infant attachment, and especially to disorganised attachment relevant to mental health issues, the few existing studies of gene-attachment interaction effects on development of childhood behavioural problems are also reviewed. A short account of the most important methodological problems to be overcome in molecular genetic studies of psychological and psychiatric phenotypes is also given. Finally, animal research focusing on brain-structural aspects related to early care and the new, conceptually important direction of studying environmental programming of early development through epigenetic modification of gene functioning is examined in brief

    Future research directions on the "elusive" white shark

    Get PDF
    White sharks, Carcharodon carcharias, are often described as elusive, with little information available due to the logistical difficulties of studying large marine predators that make long-distance migrations across ocean basins. Increased understanding of aggregation patterns, combined with recent advances in technology have, however, facilitated a new breadth of studies revealing fresh insights into the biology and ecology of white sharks. Although we may no longer be able to refer to the white shark as a little-known, elusive species, there remain numerous key questions that warrant investigation and research focus. Although white sharks have separate populations, they seemingly share similar biological and ecological traits across their global distribution. Yet, white shark’s behavior and migratory patterns can widely differ, which makes formalizing similarities across its distribution challenging. Prioritization of research questions is important to maximize limited resources because white sharks are naturally low in abundance and play important regulatory roles in the ecosystem. Here, we consulted 43 white shark experts to identify these issues. The questions listed and developed here provide a global road map for future research on white sharks to advance progress toward key goals that are informed by the needs of the research community and resource managers

    Commensal-Induced Regulatory T Cells Mediate Protection against Pathogen-Stimulated NF-κB Activation

    Get PDF
    Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-κB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-κB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-κB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis–fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-κB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-κB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore