606 research outputs found

    Admission of advanced lung cancer patients to intensive care unit: A retrospective study of 76 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Criteria for admitting patients with incurable diseases to the medical intensive care unit (MICU) remain unclear and have ethical implications.</p> <p>Methods</p> <p>We retrospectively evaluated MICU outcomes and identified risk factors for MICU mortality in consecutive patients with advanced lung cancer admitted to two university-hospital MICUs in France between 1996 and 2006.</p> <p>Results</p> <p>Of 76 included patients, 49 had non-small cell lung cancer (stage IIIB n = 20; stage IV n = 29). In 60 patients, MICU admission was directly related to the lung cancer (complication of cancer management, n = 30; cancer progression, n = 14; and lung-cancer-induced diseases, n = 17). Mechanical ventilation was required during the MICU stay in 57 patients. Thirty-six (47.4%) patients died in the MICU. Three factors were independently associated with MICU mortality: use of vasoactive agents (odds ratio [OR] 6.81 95% confidence interval [95%CI] [1.77-26.26], p = 0.005), mechanical ventilation (OR 6.61 95%CI [1.44-30.5], p = 0.015) and thrombocytopenia (OR 5.13; 95%CI [1.17-22.5], p = 0.030). In contrast, mortality was lower in patients admitted for a complication of cancer management (OR 0.206; 95%CI [0.058-0.738], p = 0.015). Of the 27 patients who returned home, four received specific lung cancer treatment after the MICU stay.</p> <p>Conclusions</p> <p>Patients with acute complications of treatment for advanced lung cancer may benefit from MCIU admission. Further studies are necessary to assess outcomes such as quality of life after MICU discharge.</p

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    The association between stress and mood across the adult lifespan on default mode network

    Get PDF
    Aging of brain structure and function is a complex process characterized by high inter- and intra-individual variability. Such variability may arise from the interaction of multiple factors, including exposure to stressful experience and mood variation, across the lifespan. Using a multimodal neuroimaging and neurocognitive approach, we investigated the association of stress, mood and their interaction, in the structure and function of the default mode network (DMN), both during rest and task-induced deactivation, throughout the adult lifespan. Data confirmed a decreased functional connectivity (FC) and task-induced deactivation of the DMN during the aging process and in subjects with lower mood; on the contrary, an increased FC was observed in subjects with higher perceived stress. Surprisingly, the association of aging with DMN was altered by stress and mood in specific regions. An increased difficulty to deactivate the DMN was noted in older participants with lower mood, contrasting with an increased deactivation in individuals presenting high stress, independently of their mood levels, with aging. Interestingly, this constant interaction across aging was globally most significant in the combination of high stress levels with a more depressed mood state, both during resting state and task-induced deactivations. The present results contribute to characterize the spectrum of FC and deactivation patterns of the DMN, highlighting the crucial association of stress and mood levels, during the adult aging process. These combinatorial approaches may help to understand the heterogeneity of the aging process in brain structure and function and several states that may lead to neuropsychiatric disorders.The work was supported by SwitchBox-FP7-HEALTH-2010-Grant 259772-2 and by ON.2, O NOVO NORTE, North Portugal Regional Operational Programme 2007/2013, of the National strategic Reference Framework (NSRF) 2007/2013, through the European Regional Development Fund (ERDF)info:eu-repo/semantics/publishedVersio

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    The use of Bayesian latent class cluster models to classify patterns of cognitive performance in healthy ageing

    Get PDF
    The main focus of this study is to illustrate the applicability of latent class analysis in the assessment of cognitive performance profiles during ageing. Principal component analysis (PCA) was used to detect main cognitive dimensions (based on the neurocognitive test variables) and Bayesian latent class analysis (LCA) models (without constraints) were used to explore patterns of cognitive performance among community-dwelling older individuals. Gender, age and number of school years were explored as variables. Three cognitive dimensions were identified: general cognition (MMSE), memory (MEM) and executive (EXEC) function. Based on these, three latent classes of cognitive performance profiles (LC1 to LC3) were identified among the older adults. These classes corresponded to stronger to weaker performance patterns (LC1>LC2>LC3) across all dimensions; each latent class denoted the same hierarchy in the proportion of males, age and number of school years. Bayesian LCA provided a powerful tool to explore cognitive typologies among healthy cognitive agers.The study is integrated in the "Maintaining health in old age through homeostasis (SWITCHBOX)" collaborative project funded by the European Commission FP7 initiative (grant HEALTH-F2-2010-259772). NS and JAP are main team members of the European consortium SWITCHBOX (http://www.switchbox-online.eu/). NCS is supported by a SwitchBox post-doctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    A review of techniques for spatial modeling in geographical, conservation and landscape genetics

    Get PDF
    Most evolutionary processes occur in a spatial context and several spatial analysis techniques have been employed in an exploratory context. However, the existence of autocorrelation can also perturb significance tests when data is analyzed using standard correlation and regression techniques on modeling genetic data as a function of explanatory variables. In this case, more complex models incorporating the effects of autocorrelation must be used. Here we review those models and compared their relative performances in a simple simulation, in which spatial patterns in allele frequencies were generated by a balance between random variation within populations and spatially-structured gene flow. Notwithstanding the somewhat idiosyncratic behavior of the techniques evaluated, it is clear that spatial autocorrelation affects Type I errors and that standard linear regression does not provide minimum variance estimators. Due to its flexibility, we stress that principal coordinate of neighbor matrices (PCNM) and related eigenvector mapping techniques seem to be the best approaches to spatial regression. In general, we hope that our review of commonly used spatial regression techniques in biology and ecology may aid population geneticists towards providing better explanations for population structures dealing with more complex regression problems throughout geographic space

    UV-luminous, star-forming hosts of z similar to 2 reddened quasars in the Dark Energy Survey

    Get PDF
    We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity [E(B − V)QSO ≳ 0.5; Lbol > 1046 erg s−1] broad-line quasars at 1.5 < z < 2.7. We combine the first year of deep, optical, ground-based observations from the Dark Energy Survey (DES) with the near-infrared VISTA Hemisphere Survey and UKIDSS Large Area Survey data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least 10 quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFRUV < 365 M⊙ yr−1, with an average SFRUV = 130 ± 95 M⊙ yr−1. We find a broad correlation between SFRUV and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation
    • 

    corecore