68 research outputs found
Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.
Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance
Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention
The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in
malignant transformation, prevention of apoptosis, drug resistance and
metastasis. The expression of this pathway is frequently altered in
breast cancer due to mutations at or aberrant expression of: HER2,
ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other
oncogenes and tumor suppressor genes. In some breast cancer cases,
mutations at certain components of this pathway (e.g., PIK3CA) are
associated with a better prognosis than breast cancers lacking these
mutations. The expression of this pathway and upstream HER2 has been
associated with breast cancer initiating cells (CICs) and in some cases
resistance to treatment. The anti-diabetes drug metformin can suppress
the growth of breast CICs and herceptin-resistant HER2+ cells. This
review will discuss the importance of the
EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but
will also include relevant examples from other cancer types. The
targeting of this pathway will be discussed as well as clinical trials
with novel small molecule inhibitors. The targeting of the hormone
receptor, HER2 and EGFR1 in breast cancer will be reviewed in
association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3
pathway.USAMRMC {[}BC022276]; Intramural RECDA Award; Italian Association for
Cancer Research (AIRC); MIUR-PRIN; Italian MIUR-FIRB Accordi di
Programma; Italian ``Ministero dell'Istruzione, dell'Universita e della
Ricerca (Ministry for Education, Universities and Research) - FIRB-MERIT
{[}RBNE08YYBM]; Italian Ministry of Economy and Finance; Italian
Ministry of Health, Ricerca Finalizzata Stemness; MIUR FIRB
{[}RBAP11ZJFA\_001]; CRO; Italian Association for Cancer Research,
(AIRC) (RM PI); Italian Association for Cancer Research, (AIRC)
{[}MCO10016]; Italian Ministry of Health; Regione Friuli Venezia-Giuli
Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells
Centrosome amplification is a common feature of human tumors. To survive, cancer cells cluster extra centrosomes during mitosis, avoiding the detrimental effects of multipolar divisions. However, it is unclear whether clustering requires adaptation or is inherent to all cells. Here, we show that cells have varied abilities to cluster extra centrosomes. Epithelial cells are innately inefficient at clustering even in the presence of HSET/KIFC1, which is essential but not sufficient to promote clustering. The presence of E-cadherin decreases cortical contractility during mitosis through a signaling cascade leading to multipolar divisions, and its knockout promotes clustering and survival of cells with multiple centrosomes. Cortical contractility restricts centrosome movement at a minimal distance required for HSET/KIFC1 to exert its function, highlighting a biphasic model for centrosome clustering. In breast cancer cell lines, increased levels of centrosome amplification are accompanied by efficient clustering and loss of E-cadherin, indicating that this is an important adaptation mechanism to centrosome amplification in cancer
Repeated cleavage failure does not establish centrosome amplification in untransformed human cells
Transient cleavage failure in dividing cells is not sufficient to establish stable populations of cells with extra centrosomes
Antitumor activity of TY-011 against gastric cancer by inhibiting Aurora A, Aurora B and VEGFR2 kinases
SIX3, a tumor suppressor, inhibits astrocytoma tumorigenesis by transcriptional repression of AURKA/B
Centrioles: active players or passengers during mitosis?
Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as “the organ for cell division”. However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues
Nuclear localisation of Aurora-A: its regulation and significance for Aurora-A functions in cancer.
The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials. Although the well-known mitotic roles of Aurora-A point at chromosomal instability, a hallmark of cancer, as a major link between Aurora-A overexpression and disease, recent evidence highlights the existence of non-mitotic functions of potential relevance. Here we focus on a nuclear-localised fraction of Aurora-A with oncogenic roles. Interestingly, this pool would identify not only non-mitotic, but also kinase-independent functions of the kinase. We review existing data in the literature and databases, examining potential links between Aurora-A stabilisation and localisation, and discuss them in the perspective of a more effective targeting of Aurora-A in cancer therapy
Inhibition of Cdk2 activity decreases Aurora-A kinase centrosomal localization and prevents centrosome amplification in breast cancer cells
Aurora-A Kinase as a Promising Therapeutic Target in Cancer
Mammalian Aurora family of serine/threonine kinases are master regulators of mitotic progression and are frequently overexpressed in human cancers. Among the three members of the Aurora kinase family (Aurora-A, -B, and -C), Aurora-A and Aurora-B are expressed at detectable levels in somatic cells undergoing mitotic cell division. Aberrant Aurora-A kinase activity has been implicated in oncogenic transformation through the development of chromosomal instability and tumor cell heterogeneity. Recent studies also reveal a novel non-mitotic role of Aurora-A activity in promoting tumor progression through activation of epithelial–mesenchymal transition reprograming resulting in the genesis of tumor-initiating cells. Therefore, Aurora-A kinase represents an attractive target for cancer therapeutics, and the development of small molecule inhibitors of Aurora-A oncogenic activity may improve the clinical outcomes of cancer patients. In the present review, we will discuss mitotic and non-mitotic functions of Aurora-A activity in oncogenic transformation and tumor progression. We will also review the current clinical studies, evaluating small molecule inhibitors of Aurora-A activity and their efficacy in the management of cancer patients
- …
