1,426 research outputs found

    Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation

    Get PDF
    © The Author(s), [year]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walters, J. B., Cruz-Uribe, A. M., & Marschall, H. R. Sulfur loss from subducted altered oceanic crust and implications for mantle oxidation. Geochemical Perspectives Letters, 13, (2020): 36-41, doi:10.7185/geochemlet.2011.Oxygen fugacity (fO2) is a controlling factor of the physics of Earth’s mantle; however, the mechanisms driving spatial and secular changes in fO2 associated with convergent margins are highly debated. We present new thermodynamic models and petrographic observations to predict that oxidised sulfur species are produced during the subduction of altered oceanic crust. Sulfur loss from the subducting slab is a function of the protolith Fe3+/ΣFe ratio and subduction zone thermal structure, with elevated sulfur fluxes predicted for oxidised slabs in cold subduction zones. We also predict bi-modal release of sulfur-bearing fluids, with a low volume shallow flux of reduced sulfur followed by an enhanced deep flux of sulfate and sulfite species, consistent with oxidised arc magmas and associated copper porphyry deposits. The variable SOx release predicted by our models both across and among active margins may introduce fO2 heterogeneity to the upper mantle.We thank James Connolly for modelling support and Peter van Keken for providing updated P–T paths for the Syracuse et al. (2010) models. The manuscript benefited from the editorial handling by Helen Williams and from constructive reviews of Maryjo Brounce, Katy Evans, and an anonymous reviewer. JBW acknowledges Fulbright and Chase Distinguished Research fellowships. This work was supported by NSF grant EAR1725301 awarded to AMC

    Isotopic compositions of sulfides in exhumed high-pressure terranes: Implications for sulfur cycling in subduction zones

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 20(7), (2019): 3347-3374, doi:10.1029/2019GC008374.Subduction is a key component of Earth's long‐term sulfur cycle; however, the mechanisms that drive sulfur from subducting slabs remain elusive. Isotopes are a sensitive indicator of the speciation of sulfur in fluids, sulfide dissolution‐precipitation reactions, and inferring fluid sources. To investigate these processes, we report δ34S values determined by secondary ion mass spectroscopy in sulfides from a global suite of exhumed high‐pressure rocks. Sulfides are classified into two petrogenetic groups: (1) metamorphic, which represent closed‐system (re)crystallization from protolith‐inherited sulfur, and (2) metasomatic, which formed during open system processes, such as an influx of oxidized sulfur. The δ34S values for metamorphic sulfides tend to reflect their precursor compositions: −4.3 ‰ to +13.5 ‰ for metabasic rocks, and −32.4 ‰ to −11.0 ‰ for metasediments. Metasomatic sulfides exhibit a range of δ34S from −21.7 ‰ to +13.9 ‰. We suggest that sluggish sulfur self‐diffusion prevents isotopic fractionation during sulfide breakdown and that slab fluids inherit the isotopic composition of their source. We estimate a composition of −11 ‰ to +8 ‰ for slab fluids, a significantly smaller range than observed for metasomatic sulfides. Large fractionations during metasomatic sulfide precipitation from sulfate‐bearing fluids, and an evolving fluid composition during reactive transport may account for the entire ~36 ‰ range of metasomatic sulfide compositions. Thus, we suggest that sulfates are likely the dominant sulfur species in slab‐derived fluids.All isotopic data and analysis locations are detailed in the supporting information accompanying this article. The authors would like to thank B. Monteleone and M. Yates for assistance with SIMS and EPMA analyses, respectively. J. Selverstone is thanked for providing samples and D. Whitney for providing additional field context. The authors would also like to thank J. Alt, C. LaFlamme, and an anonymous reviewer for their thoughtful and thorough reviews, as well as careful editorial handling by J. Blichert‐Toft. This project was funded by National Science Foundation Grant EAR 1725301 awarded to A. M. C. and a Geological Society of America grant to J. B. W.2019-12-1

    Geodynamics of synconvergent extension and tectonic mode switching: Constraints from the Sevier-Laramide orogen

    Get PDF
    Many orogenic belts experience alternations in shortening and extension (tectonic mode switches) during continuous plate convergence. The geodynamics of such alternations are not well understood. We present a record of Late Cretaceous to Eocene alternations of shortening and extension from the interior of the retroarc Sevier-Laramide orogen of the western United States. We integrate new Lu-Hf garnet geochronometry with revised PT paths utilizing differential thermobarometry combined with isochemical G-minimization plots, and monazite Th-Pb inclusion geochronometry to produce a well-constrained “M” shaped PTt path. Two burial events (86 and 65 Ma) are separated by ∼3 kbar of decompression. The first burial episode is Late Cretaceous, records a 2 kbar pressure increase at ∼515–550 °C and is dated by a Lu-Hf garnet isochron age of 85.5 ± 1.9 Ma (2σ); the second burial episode records ∼1 kbar of pressure increase at ∼585–615 °C, and is dated by radially decreasing Th-Pb ages of monazite inclusions in garnet between ∼65 and 45 Ma. We propose a synconvergent lithospheric delamination cycle, superimposed on a dynamic orogenic wedge, as a viable mechanism. Wedge tapers may evolve from critical to subcritical (amplification), to supercritical (separation), and back to subcritical (re-equilibration) owing to elevation changes resulting from isostatic adjustments during the amplification and separation of Rayleigh-Taylor instabilities, and post-separation thermal and rheological re-equilibration. For the Sevier-Laramide hinterland, the sequence of Late Cretaceous delamination, low-angle subduction, and slab rollback/foundering during continued plate convergence explains the burial-exhumation-burial-exhumation record and the “M-shaped” PTt path

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe
    corecore