172 research outputs found

    High Resolution In Vivo Bioluminescent Imaging for the Study of Bacterial Tumour Targeting

    Get PDF
    The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI) represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT) for interpretation

    Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    Get PDF
    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examinedL-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm-1), L-aspartic acid (938 cm-1), L-cysteine (679 cm-1),L-glutamine (1090 cm−1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made

    2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias: Executive summary

    Get PDF
    Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Role of SPI-1 Secreted Effectors in Acute Bovine Response to Salmonella enterica Serovar Typhimurium: A Systems Biology Analysis Approach

    Get PDF
    Salmonella enterica Serovar Typhimurium (S. Typhimurium) causes enterocolitis with diarrhea and polymorphonuclear cell (PMN) influx into the intestinal mucosa in humans and calves. The Salmonella Type III Secretion System (T3SS) encoded at Pathogenicity Island I translocates Salmonella effector proteins SipA, SopA, SopB, SopD, and SopE2 into epithelial cells and is required for induction of diarrhea. These effector proteins act together to induce intestinal fluid secretion and transcription of C-X-C chemokines, recruiting PMNs to the infection site. While individual molecular interactions of the effectors with cultured host cells have been characterized, their combined role in intestinal fluid secretion and inflammation is less understood. We hypothesized that comparison of the bovine intestinal mucosal response to wild type Salmonella and a SipA, SopABDE2 effector mutant relative to uninfected bovine ileum would reveal heretofore unidentified diarrhea-associated host cellular pathways. To determine the coordinated effects of these virulence factors, a bovine ligated ileal loop model was used to measure responses to wild type S. Typhimurium (WT) and a ΔsipA, sopABDE2 mutant (MUT) across 12 hours of infection using a bovine microarray. Data were analyzed using standard microarray analysis and a dynamic Bayesian network modeling approach (DBN). Both analytical methods confirmed increased expression of immune response genes to Salmonella infection and novel gene expression. Gene expression changes mapped to 219 molecular interaction pathways and 1620 gene ontology groups. Bayesian network modeling identified effects of infection on several interrelated signaling pathways including MAPK, Phosphatidylinositol, mTOR, Calcium, Toll-like Receptor, CCR3, Wnt, TGF-β, and Regulation of Actin Cytoskeleton and Apoptosis that were used to model of host-pathogen interactions. Comparison of WT and MUT demonstrated significantly different patterns of host response at early time points of infection (15 minutes, 30 minutes and one hour) within phosphatidylinositol, CCR3, Wnt, and TGF-β signaling pathways and the regulation of actin cytoskeleton pathway

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial

    Get PDF
    Background Third-generation aromatase inhibitors are more effective than tamoxifen for preventing recurrence in postmenopausal women with hormone-receptor-positive invasive breast cancer. However, it is not known whether anastrozole is more effective than tamoxifen for women with hormone-receptor-positive ductal carcinoma in situ (DCIS). Here, we compare the efficacy of anastrozole with that of tamoxifen in postmenopausal women with hormone-receptor-positive DCIS. Methods In a double-blind, multicentre, randomised placebo-controlled trial, we recruited women who had been diagnosed with locally excised, hormone-receptor-positive DCIS. Eligible women were randomly assigned in a 1:1 ratio by central computer allocation to receive 1 mg oral anastrozole or 20 mg oral tamoxifen every day for 5 years. Randomisation was stratified by major centre or hub and was done in blocks (six, eight, or ten). All trial personnel, participants, and clinicians were masked to treatment allocation and only the trial statistician had access to treatment allocation. The primary endpoint was all recurrence, including recurrent DCIS and new contralateral tumours. All analyses were done on a modified intention-to-treat basis (in all women who were randomised and did not revoke consent for their data to be included) and proportional hazard models were used to compute hazard ratios and corresponding confidence intervals. This trial is registered at the ISRCTN registry, number ISRCTN37546358. Results Between March 3, 2003, and Feb 8, 2012, we enrolled 2980 postmenopausal women from 236 centres in 14 countries and randomly assigned them to receive anastrozole (1449 analysed) or tamoxifen (1489 analysed). Median follow-up was 7·2 years (IQR 5·6–8·9), and 144 breast cancer recurrences were recorded. We noted no statistically significant difference in overall recurrence (67 recurrences for anastrozole vs 77 for tamoxifen; HR 0·89 [95% CI 0·64–1·23]). The non-inferiority of anastrozole was established (upper 95% CI <1·25), but its superiority to tamoxifen was not (p=0·49). A total of 69 deaths were recorded (33 for anastrozole vs 36 for tamoxifen; HR 0·93 [95% CI 0·58–1·50], p=0·78), and no specific cause was more common in one group than the other. The number of women reporting any adverse event was similar between anastrozole (1323 women, 91%) and tamoxifen (1379 women, 93%); the side-effect profiles of the two drugs differed, with more fractures, musculoskeletal events, hypercholesterolaemia, and strokes with anastrozole and more muscle spasm, gynaecological cancers and symptoms, vasomotor symptoms, and deep vein thromboses with tamoxifen. Conclusions No clear efficacy differences were seen between the two treatments. Anastrozole offers another treatment option for postmenopausal women with hormone-receptor-positive DCIS, which may be be more appropriate for some women with contraindications for tamoxifen. Longer follow-up will be necessary to fully evaluate treatment differences

    Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02 TeV with the ATLAS detector

    Get PDF
    The modification of the production of J/ψ, ψ(2S), and Υ(nS) (n=1,2,3) in p+Pb collisions with respect to their production in pp collisions has been studied. The p+Pb and pp datasets used in this paper correspond to integrated luminosities of 28 nb−1 and 25 pb−1 respectively, collected in 2013 and 2015 by the ATLAS detector at the LHC, both at a centre-of-mass energy per nucleon pair of 5.02 TeV. The quarkonium states are reconstructed in the dimuon decay channel. The yields of J/ψ and ψ(2S) are separated into prompt and non-prompt sources. The measured quarkonium differential cross sections are presented as a function of rapidity and transverse momentum, as is the nuclear modification factor, RpPb for J/ψ and Υ(nS). No significant modification of the J/ψ production is observed while Υ(nS) production is found to be suppressed at low transverse momentum in p+Pb collisions relative to pp collisions. The production of excited charmonium and bottomonium states is found to be suppressed relative to that of the ground states in central p+Pb collisions
    corecore