65 research outputs found

    Bragg spectroscopy with an accelerating Bose-Einstein condensate

    Full text link
    We present the results of Bragg spectroscopy performed on an accelerating Bose-Einstein condensate. The Bose condensate undergoes circular micro-motion in a magnetic TOP trap and the effect of this motion on the Bragg spectrum is analyzed. A simple frequency modulation model is used to interpret the observed complex structure, and broadening effects are considered using numerical solutions to the Gross-Pitaevskii equation.Comment: 5 pages, 3 figures, to appear in PRA. Minor changes to text and fig

    The early spectral evolution of SN 2004dt

    Full text link
    Aims. We study the optical spectroscopic properties of Type Ia Supernova (SN Ia) 2004dt, focusing our attention on the early epochs. Methods. Observation triggered soon after the SN 2004dt discovery allowed us to obtain a spectrophotometric coverage from day -10 to almost one year (~353 days) after the B band maximum. Observations carried out on an almost daily basis allowed us a good sampling of the fast spectroscopic evolution of SN 2004dt in the early stages. To obtain this result, low-resolution, long-slit spectroscopy was obtained using a number of facilities. Results. This supernova, which in some absorption lines of its early spectra showed the highest degree of polarization ever measured in any SN Ia, has a complex velocity structure in the outer layers of its ejecta. Unburnt oxygen is present, moving at velocities as high as ~16,700 km/s, with some intermediate-mass elements (Mg, Si, Ca) moving equally fast. Modeling of the spectra based on standard density profiles of the ejecta fails to reproduce the observed features, whereas enhancing the density of outer layers significantly improves the fit. Our analysis indicates the presence of clumps of high-velocity, intermediate-mass elements in the outermost layers, which is also suggested by the spectropolarimetric data.Comment: 13 pages, 15 figures, accepted for pubblication in Astronomy and Astrophysic

    The Spectroscopic Diversity of Type Ia Supernovae

    Full text link
    We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a consistent manner, making data set well suited for studies of SN Ia spectroscopic diversity. We study the spectroscopic and photometric properties of SN Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SN Ia with broader lines. Based on the evolution of the characteristic Si II 6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ~0 to ~400 km/s/day considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B-V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and report new detections of C II 6580 in 23 early-time spectra. The frequency of C II detections is not higher in SN Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SN Ia, we find no relation between the FWHM of the iron emission feature at ~4700 A and Dm15(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SN Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B-V color of SN Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.Comment: 36 pages (emulateapj), 23 figures. Accepted for publication in AJ. Spectroscopic data available at http://www.cfa.harvard.edu/supernova/SNarchive.html . New SNID template set available at http://marwww.in2p3.fr/~blondin/software/snid/index.html . Minor changes from v1 to conform to published versio

    Prospects of observing a quasar HII region during the Epoch of Reionization with redshifted 21cm

    Full text link
    We present a study of the impact of a bright quasar on the redshifted 21cm signal during the Epoch of Reionization (EoR). Using three different cosmological radiative transfer simulations, we investigate if quasars are capable of substantially changing the size and morphology of the H II regions they are born in. We choose stellar and quasar luminosities in a way that is favourable to seeing such an effect. We find that even the most luminous of our quasar models is not able to increase the size of its native H II region substantially beyond those of large H II regions produced by clustered stellar sources alone. However, the quasar H II region is found to be more spherical. We next investigate the prospects of detecting such H II regions in the redshifted 21cm data from the Low Frequency Array (LOFAR) by means of a matched filter technique. We find that H II regions with radii ~ 25 comoving Mpc or larger should have a sufficiently high detection probability for 1200 hours of integration time. Although the matched filter can in principle distinguish between more and less spherical regions, we find that when including realistic system noise this distinction can no longer be made. The strong foregrounds are found not to pose a problem for the matched filter technique. We also demonstrate that when the quasar position is known, the redshifted 21cm data can still be used to set upper limits on the ionizing photon rate of the quasar. If both the quasar position and its luminosity are known, the redshifted 21 cm data can set new constrains on quasar lifetimes.Comment: 17 pages, 12 figures, 3 tables, accepted for publication in MNRAS; changes in introduction and figure

    The Intergalactic medium transmission towards z>4 galaxies with VANDELS and the impact of dust attenuation

    Get PDF
    International audienceAims. Our aim is to estimate the intergalactic medium (IGM) transmission towards UV-selected star-forming galaxies at z ≳ 4 and study the effect of the dust attenuation on these measurements.Methods. The UV spectrum of high-redshift galaxies is a combination of their intrinsic emission and the effect of the IGM absorption along their line of sight. Using data coming from the unprecedentedly deep spectroscopy from the VANDELS ESO public survey carried out with the VIMOS instrument, we compute both the dust extinction and the mean transmission of the IGM as well as its scatter from a set of 281 galaxies at z >  3.87. Because of a degeneracy between the dust content of the galaxy and the IGM, we first estimate the stellar dust extinction parameter E(B − V) and study the result as a function of the dust prescription. Using these measurements as constraint for the spectral fit we estimate the IGM transmission Tr(Lyα). Both photometric and spectroscopic spectral energy distribution fits are performed using the SPectroscopy And photometRy fiTting tool for Astronomical aNalysis which is able to fit the spectral continuum of the galaxies as well as photometric data.Results. Using the classical Calzetti attenuation law we find that E(B − V) goes from 0.11 at z = 3.99 to 0.08 at z = 5.15. These results are in very close agreement with published measurements. We estimate the IGM transmission and find that the transmission is decreasing with increasing redshift from Tr(Lyα) = 0.53 at z = 3.99 to 0.28 at z = 5.15. We also find a large standard deviation around the average transmission that is more than 0.1 at every redshift. Our results are in very good agreement with both previous measurements from AGN studies and with theoretical models.Key words: galaxies: high-redshift / galaxies: general / intergalactic medium⋆ Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under programme ID(s) 194.A-2003

    Less and more IGM-transmitted galaxies from z ∼2.7 to z ∼6 from VANDELS and VUDS

    Get PDF
    Aims. Our aim is to analyze the variance of the intergalactic medium (IGM) transmission by studying this parameter in the rest-frame UV spectra of a large sample of high-redshift galaxies. Methods. We made use of the VIMOS Ultra Deep Survey and the VANDELS public survey to gain insight into the far UV spectrum of 2.7  <  z  <  6 galaxies. Using the SPARTAN fitting software, we estimated the IGM toward individual galaxies and then divided them into two sub-samples characterized by a transmission above or below the theoretical prescription. We created average spectra of combined VUDS and VANDELS data for each set of galaxies in seven redshift bins. Results. The resulting spectra clearly exhibit the variance of the IGM transmission that can be seen directly from high-redshift galaxy observations. Computing the optical depth based on the IGM transmission, we find an excellent agreement with results for quasi-stellar objects. In addition, our measurements appear to suggest that there is a large dispersion of redshift where a complete Gunn-Peterson Trough occurs, depending on the line of sight

    The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperature estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at http://www.sdss3.org/dr

    The VANDELS ESO public spectroscopic survey : Final Data Release of 2087 spectra and spectroscopic measurements

    Get PDF
    © ESO 2021. The original publication is available at https://doi.org/10.1051/0004-6361/202040059VANDELS is an ESO Public Spectroscopic Survey designed to build a sample of high signal to noise, medium resolution spectra of galaxies at redshift between 1 and 6.5. Here we present the final Public Data Release of the VANDELS Survey, comprising 2087 redshift measurements. We give a detailed description of sample selection, observations and data reduction procedures. The final catalogue reaches a target selection completeness of 40% at iAB = 25. The high Signal to Noise ratio of the spectra (above 7 in 80% of the spectra) and the dispersion of 2.5{\AA} allowed us to measure redshifts with high precision, the redshift measurement success rate reaching almost 100%. Together with the redshift catalogue and the reduced spectra, we also provide optical mid-IR photometry and physical parameters derived through SED fitting. The observed galaxy sample comprises both passive and star forming galaxies covering a stellar mass range 8.3<Log(M*/Msolar)Peer reviewe
    corecore