420 research outputs found

    The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’

    Get PDF
    One of the greatest terrestrial radiations is the diversification of the flowering plants (Angiospermae) in the Cretaceous period. Early angiosperms appear to have been limited to disturbed, aquatic or extremely dry sites, suggesting that they were suppressed in most other places by the gymnosperms that still dominated the plant world. However, fossil evidence suggests that by the end of the Cretaceous the angiosperms had spectacularly taken over the dominant position from the gymnosperms around the globe. Here, we suggest an ecological explanation for their escape from their subordinate position relative to gymnosperms and ferns. We propose that angiosperms due to their higher growth rates profit more rapidly from increased nutrient supply than gymnosperms, whereas at the same time angiosperms promote soil nutrient release by producing litter that is more easily decomposed. This positive feedback may have resulted in a runaway process once angiosperms had reached a certain abundance. Evidence for the possibility of such a critical transition to angiosperm dominance comes from recent work on large scale vegetation shifts, linking long-term field observations, large scale experiments and the use of simulation models

    Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees

    Get PDF
    Background - Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties. Results - Our results provide strong evidence that East African endemic lineages of Annonaceae have multiple origins dated to significantly different times spanning the Oligocene and Miocene epochs. Moreover, these successive origins (c. 33, 16 and 8 million years ¿ Myr) coincide with known periods of aridification and geological activity in Africa that would have recurrently isolated the Guineo-Congolian rain forest from the East African one. All East African taxa were found to have diversified prior to Pleistocene times. Conclusion - Molecular phylogenetic dating analyses of this large pan-African clade of Annonaceae unravels an interesting pattern of diversification for rain forest restricted trees co-occurring in West/Central and East African rain forests. Our results suggest that repeated reconnections between the West/Central and East African rain forest blocks allowed for biotic exchange while the break-ups induced speciation via vicariance, enhancing the levels of endemicity. These results provide an explanation for present day distribution patterns and origins of endemicity for African rain forest trees. Moreover, given the pre-Pleistocene origins of all the studied endemic East African genera and species, these results also offer important insights for setting conservation priorities in these highly diversified but threatene

    Exploring the views of infection consultants in England on a novel delinked funding model for antimicrobials: the SMASH study

    Get PDF
    OBJECTIVES: A novel 'subscription-type' funding model was launched in England in July 2022 for ceftazidime/avibactam and cefiderocol. We explored the views of infection consultants on important aspects of the delinked antimicrobial funding model. METHODS: An online survey was sent to all infection consultants in NHS acute hospitals in England. RESULTS: The response rate was 31.2% (235/753). Most consultants agreed the model is a welcome development (69.8%, 164/235), will improve treatment of drug-resistant infections (68.5%, 161/235) and will stimulate research and development of new antimicrobials (57.9%, 136/235). Consultants disagreed that the model would lead to reduced carbapenem use and reported increased use of cefiderocol post-implementation. The presence of an antimicrobial pharmacy team, requirement for preauthorization by infection specialists, antimicrobial stewardship ward rounds and education of infection specialists were considered the most effective antimicrobial stewardship interventions. Under the new model, 42.1% (99/235) of consultants would use these antimicrobials empirically, if risk factors for antimicrobial resistance were present (previous infection, colonization, treatment failure with carbapenems, ward outbreak, recent admission to a high-prevalence setting).Significantly higher insurance and diversity values were given to model antimicrobials compared with established treatments for carbapenem-resistant infections, while meropenem recorded the highest enablement value. Use of both 'subscription-type' model drugs for a wide range of infection sites was reported. Respondents prioritized ceftazidime/avibactam for infections by bacteria producing OXA-48 and KPC and cefiderocol for those producing MBLs and infections with Stenotrophomonas maltophilia, Acinetobacter spp. and Burkholderia cepacia. CONCLUSIONS: The 'subscription-type' model was viewed favourably by infection consultants in England

    The Benefits of Mutualism: A Conceptual Framework

    Full text link
    There are three general mechanisms by which phenotypic benefits are transferred between unrelated organisms. First, one organism may purloin benefits from another by preying on or parasitizing the other organism. Second, one organism may enjoy benefits that are incidental to or a by-product of the self-serving traits of another organism. Third, an organism may invest in another organism if that investment produces return benefits which outweigh the cost of the investment. Interactions in which both parties gain a net benefit are mutualistic. The three mechanisms by which benefits are transferred between organisms can be combined in pairs to produce six possible kinds of original or ‘basal’ mutualisms that can arise from an amutualistic state. A review of the literature suggests that most or all interspecific mutualism have origins in three of the six possible kinds of basal mutualism. Each of these three basal mutualisms have byproduct benefits flowing in at least one direction. The transfer of by-product benefits and investment are common to both intra- and interspecific mutualisms, so that some interspecific mutualisms have intraspecific analogs. A basal mutualism may evolve to the point where each party invests in the other, sometimes obscuring the nature of the original interaction along the way. Two prominent models for the evolution of mutualism do not include by-product benefits: Roughgarden's model for the evolution of the damsel-fish anemone mutualism and the ‘Tit-for-Tat’ model of reciprocity. Using the conceptual framework presented here, including in particular by-product benefits, I have shown how it is possible to construct more parsimonious alternatives to both models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72439/1/j.1469-185X.1995.tb01196.x.pd

    The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study

    Get PDF
    Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades

    RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution

    Full text link
    The gene coxII, normally present in the mitochondrion, was functionally transferred to the nucleus during flowering plant evolution. coxII transfer is estimated to have occurred between 60 and 200 million years ago, whereas loss of coxII from the mitochondrion occurred much more recently, being restricted to a single genus of legumes. Most legumes have coxII in both the nucleus and the mitochondrion; however, no evidence is found for simultaneous coxII expression in both compartments. The nuclear coxII sequence more closely resembles edited mitochondrial coxII transcripts than the genes encoding these RNAs. Hence, gene transfer appears to have involved reverse transcription of an edited RNA intermediate. The nuclear gene contains an intron at the junction of the transit peptide sequence and the mature protein-coding sequence; exon shuffling may have played a role in assembling a functional coxII gene in the nucleus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29177/1/0000224.pd

    The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function

    Get PDF
    BACKGROUND: Therizinosauria is one of the most enigmatic and peculiar clades among theropod dinosaurs, exhibiting an unusual suite of characters, such as lanceolate teeth, a rostral rhamphotheca, long manual claws, and a wide, opisthopubic pelvis. This specialized anatomy has been associated with a shift in dietary preferences and an adaptation to herbivory. Despite a large number of discoveries in recent years, the fossil record for Therizinosauria is still relatively poor, and cranial remains are particularly rare. METHODOLOGY/PRINCIPAL FINDINGS: Based on computed tomographic (CT) scanning of the nearly complete and articulated skull of Erlikosaurus andrewsi, as well as partial braincases of two other therizinosaurian taxa, the endocranial anatomy is reconstructed and described. The wider phylogenetic range of the described specimens permits the evaluation of sensory and cognitive capabilities of Therizinosauria in an evolutionary context. The endocranial anatomy reveals a mosaic of plesiomorphic and derived characters in therizinosaurians. The anatomy of the olfactory apparatus and the endosseous labyrinth suggests that olfaction, hearing, and equilibrium were well-developed in therizinosaurians and might have affected or benefited from an enlarged telencephalon. CONCLUSION/SIGNIFICANCE: This study presents the first appraisal of the evolution of endocranial anatomy and sensory adaptations in Therizinosauria. Despite their phylogenetically basal position among maniraptoran dinosaurs, therizinosaurians had developed the neural pathways for a well developed sensory repertoire. In particular olfaction and hearing may have played an important role in foraging, predator evasion, and/or social complexity

    First evidence for a massive extinction event affecting bees close to the K-T boundary

    Get PDF
    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators.Sandra M. Rehan, Remko Leys, Michael P. Schwar
    corecore