1,472 research outputs found

    Variations of Wave Energy Power in Shoaling Zone of Benin Coastal Zone

    Full text link
    Today, we observe at the population level, that the improvement in comfort is accompanied by an increase in the electrical energy required. The predicted exhaustion of fossil energy resources maintains some speculation. Their unequal geographical distribution justifies the energy dependence of Benin overlooked from outside. So it is urgent to explore the various sources of renewable energy available to Benin. In this work, using measurements made ​​by the Millennium Challenge Account (MCA-Benin) as part of the extension of the port of Cotonou, with Boussinesq equations (Peregrine) and Stokes waves dispersion relation, we characterized the variations of various swell parameters (height, wavelength, velocities) in the shoaling zone on the study site and proceeded to estimate variations in wave energy power from deep waters to the bathymetric breaking point. Finally, the zone with high energy power (where the conversion of this energy into electrical energy would be profitable) of these waves is highlighted on the site, the local water depth at the point of breaking waves is evaluated and results obtained allowed to justify the very energetic character take by these swells on this coast when they are close to the beach

    Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes

    Get PDF
    PtII azido complexes [Pt(bpy)(N3)2] (1), [Pt(phen)(N3)2] (2) and trans-[Pt(N3)2(py)2] (3) incorporating the bidentate diimine ligands 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by X-ray crystallography; complex 3 shows significant deviation from square-planar geometry (N3–Pt–N3 angle 146.7°) as a result of steric congestion at the Pt centre. The novel PtIV complexes trans, cis-[Pt(bpy)(OAc)2(N3)2] (4), trans, cis-[Pt(phen)(OAc)2(N3)2] (5), trans, trans, trans-[Pt(OAc)2(N3)2(py)2] (6), were obtained from 1–3via oxidation with H2O2 in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4–6 exhibit interesting structural and photochemical properties that were studied by X-ray, NMR and UV-vis spectroscopy and TD-DFT (time-dependent density functional theory). These PtIV complexes exhibit greater absorption at longer wavelengths (ε = 9756 M−1 cm−1 at 315 nm for 4; ε = 796 M−1 cm−1 at 352 nm for 5; ε = 16900 M−1 cm−1 at 307 nm for 6, in aqueous solution) than previously reported PtIV azide complexes, due to the presence of aromatic amines, and 4–6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4–6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of 1–3 were also simulated by computational methods and comparison between PtII and PtIV electronic and structural properties allowed further elucidation of the photochemistry of 4–6

    Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne

    Full text link
    In the catalytic addition of water to propyne the Au(III) catalyst is not stable under non-relativistic conditions and dissociates into a Au(I) compound and Cl2. This implies that one link in the chain of events in the catalytic cycle is broken and relativity may well be seen as the reason why Au(III) compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Solvation and Protonation of Coumarin 102 in Aqueous Media - a Fluorescence Spectroscopic and Theoretical Study

    Get PDF
    The ground and excited state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, was obtained from the absorption spectra, for the excited state dissociation constant was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle – the value of also by calculations via the Förster cycle - using an implicit-explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state C102 occurs primarily as a hydrogen bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation; (iii) in the ground state the amino nitrogen atom, in the excited state the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.271010 M-1 s 1 for the rate constants of excited state protonation, and kdpr = 2.78108 s-1 for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited state proton transfer is reached in strongly acidic solutions

    Xanthone-photosensitized detoxification of the veterinary anthelmintic fenbendazole

    Full text link
    Fenbendazole (1) is a common veterinary anthelmintic, toxic to water living microorganisms. Fluorescence quantum yields of 1 were found to be 0.11 in acetonitrile, 0.068 in methanol, 0.034 in cyclohexane, and 0.013 in water. The singlet excited state energy was ca. 96 kcal mol(-1) in all solvents. The phosphorescence spectrum of 1 in ethanol at 77 K displayed a maximum at 450 nm, leading to a triplet energy of 75 kcal mol(-1). Experimental excited state energies agree well with the results of OFT calculations at the time-dependent B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level. Laser flash photolysis (LFP) of 1 at 266 nm led to transients absorbing in the 300-700 nm range, ascribed to radical cation 1(.+), which were also observed upon 355 nm LFP of xanthone (XA) in the presence of 1. Solar-simulated photolysis revealed XA-enhanced photodegradation of 1 and led to decreased toxicity, as shown by Daphnia magna assays. (c) 2013 Elsevier B.V. All rights reserved.Financial support from the MICINN (CTQ2010-19909) and the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged.Jornet Olivé, MD.; Castillo López, MÁ.; Sabater Marco, C.; R. Domingo, L.; Tormos Faus, RE.; Miranda Alonso, MÁ. (2013). Xanthone-photosensitized detoxification of the veterinary anthelmintic fenbendazole. Journal of Photochemistry and Photobiology A: Chemistry. 264:34-40. https://doi.org/10.1016/j.jphotochem.2013.05.002S344026

    Актуальність впровадження систем газового обліку в сучасних умовах

    Get PDF
    Free energy calculation has long been an important goal for molecular dynamics simulation and force field development, but historically it has been challenged by limited performance, accuracy, and creation of topologies for arbitrary small molecules. This has made it difficult to systematically compare different sets of parameters to improve existing force fields, but in the past few years several authors have developed increasingly automated procedures to generate parameters for force fields such as Amber, CHARMM, and OPLS. Here, we present a new framework that enables fully automated generation of GROMACS topologies for any of these force fields and an automated setup for parallel adaptive optimization of high-throughput free energy calculation by adjusting lambda point placement on the fly. As a small example of this automated pipeline, we have calculated solvation free energies of 50 different small molecules using the GAFF, OPLS-AA, and CGenFF force fields and four different water models, and by including the often neglected polarization costs, we show that the common charge models are somewhat underpolarized.QC 20150505</p

    Ring splitting of azetidin-2-ones via radical anions

    Full text link
    The radical anions of azetidin-2-ones, generated by UV-irradiation in the presence of triethylamine, undergo ring-splitting via N-C4 or C3-C4 bond breaking, leading to open-chain amides. This reactivity diverges from that found for the neutral excited states, which is characterised by alpha-cleavage. The preference for beta-cleavage is supported by DFT theoretical calculations on the energy barriers associated with the involved transition states. Thus, injection of one electron into the azetidin-2-one moiety constitutes a complementary activation strategy which may be exploited to produce new chemistry.Financial support from the MICINN (Grants CTQ-2010-14882, CTQ-2009-13699 and JCI-2010-06204), Generalitat Valenciana (Prometeo 2008/90), from CSIC (JAEDOC 101-2011) and from the UPV (Grant No. 20100994 and MCI Program) is gratefully acknowledged.Pérez Ruiz, R.; Sáez Cases, JA.; Domingo, LR.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2012). Ring splitting of azetidin-2-ones via radical anions. Organic and Biomolecular Chemistry. 10(39):7928-7932. https://doi.org/10.1039/c2ob26528aS79287932103
    corecore