THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.
To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): Fiona S. Mackay, Nicola J. Farrer, Luca Salassa, Hui-Chung Tai, Robert J. Deeth, Stephen A. Moggach, Peter A. Wood, Simon Parsons and Peter J. Sadler
Article Title: Synthesis, characterisation and photochemistry of PtIV pyridyl azido acetato complexes
Year of publication: 2009
Link to published article:
http://dx.doi.org/10.1039/b820550g
Publisher statement: None

Synthesis, characterisation and photochemistry of $\mathbf{P t}^{\mathrm{IV}}$ pyridyl azido acetato complexes ${ }^{\dagger}$

Fiona S. Mackay ${ }^{\text {a }}$, Nicola J. Farrer ${ }^{\text {b }}$, Luca Salassa ${ }^{\text {b }}$, Hui-Chung Tai ${ }^{\text {b }}$, Robert J. Deeth ${ }^{\text {b }}$, Stephen A. Moggach ${ }^{\text {a }}$, Peter A. Wood ${ }^{\text {a }}$, Simon Parsons ${ }^{\text {a }}$, Peter J. Sadler* ${ }^{\text {b }}$

$\mathrm{Pt}^{\mathrm{II}}$ azido complexes $\left[\mathrm{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}\right]$ (1), $\left[\mathrm{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}\right]$ (2) and trans- $\left[\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{py})_{2}\right]$ incorporating the bidentate diimine ligands 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or the monodentate pyridine (py) respectively, have been synthesised from their chlorido precursors and characterised by x-ray crystallography; complex $\mathbf{3}$ shows significant deviation from square-planar geometry $\left(\mathrm{N}_{3}-\mathrm{Pt}-\mathrm{N}_{3}\right.$ angle $\left.146.7^{\circ}\right)$ as a result of steric congestion at the Pt centre. The novel $\mathrm{Pt}^{\mathrm{IV}}$ complexes trans, cis-[Pt(bpy)(OAc $\left.)_{2}\left(\mathrm{~N}_{3}\right)_{2}\right](\mathbf{4})$, trans, cis-[Pt(phen)(OAc) $\left.)_{2}\left(\mathrm{~N}_{3}\right)_{2}\right](5)$, trans, trans, trans- $\left[\mathrm{Pt}(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{py})_{2}\right]$ (6), were obtained from $\mathbf{1 - 3}$ via oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid followed by reaction of the intermediate with acetic anhydride. Complexes 4-6 exhibit interesting structural and photochemical properties that were studied by x-ray, NMR and UV-vis spectroscopy and TDDFT. These $\mathrm{Pt}^{\mathrm{IV}}$ complexes exhibit greater absorption at longer wavelengths $(\varepsilon=9756$ $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 315 nm for $\mathbf{4} ; \varepsilon=796 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 352 nm for $\mathbf{5} ; \varepsilon=16900 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 307 nm for $\mathbf{6}$, in aqueous solution) than previously reported $\mathrm{Pt}^{\mathrm{IV}}$ azide complexes, due to the presence of aromatic amines, and 4-6 undergo photoactivation with both UVA (365 nm) and visible green light (514 nm). The UV-vis spectra of complexes 4-6 were calculated using TD-DFT; the nature of the transitions contributing to the UV-vis bands provide insight into the mechanism of production of the observed photoproducts. The UV-vis spectra of $\mathbf{1 - 3}$ were also simulated by computational methods and comparison between $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{IV}}$ electronic and structural properties allowed further elucidation of the photochemistry of 4-6.
${ }^{a}$ School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
${ }^{b}$ Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. Email: p.j.sadler@warwick.ac.uk.
${ }^{\dagger}$ Electronic Supplementary Information (ESI) is available: Crystallographic data for compounds $\mathbf{1 -}$ 6, Ortep plots of $\mathbf{1}$ and 2, mass spectrometric data and TDDFT singlet excited-state data. CCDC numbers 709182 (2), 709183 (1), 709184 (3), 709185 (4), 709186 (5), 709187 (6) relate to the crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Introduction

$\mathrm{Pt}^{\text {II }}$ pyridyl compounds are well-known to exhibit a rich photochemistry, which can be tuned through peripheral modification of the ligands bound to the $\mathrm{Pt}^{\mathrm{II}}$ centre. ${ }^{1,2}$ The low energy spectroscopic absorption band in the visible region and long-lived excited states of these complexes lead to a variety of applications, including their use in biosensors, ${ }^{3}$ light-emitting devices ${ }^{4}$ and dyesensitised solar cells. ${ }^{5}$ The biological properties of $\mathrm{Pt}^{\mathrm{II}}$ amines have been extensively investigated, with particular emphasis on potential antitumor activity following the success in the clinic of the $\mathrm{Pt}^{\mathrm{II}}$ drug cisplatin, cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, and related complexes. ${ }^{6}$
$\mathrm{Pt}^{\mathrm{IV}}$ complexes are much more inert to reaction than $\mathrm{Pt}^{\mathrm{II}}$ species, and tuning their reactivity to achieve selective reduction to $\mathrm{Pt}^{\mathrm{II}}$ in vivo provides a strategy for reducing the side-reactions associated with $\mathrm{Pt}^{\mathrm{II}}$ antitumor drugs. ${ }^{7,8}$ Although reports of $\mathrm{Pt}^{\mathrm{IV}}$ bipyridine complexes, for example, have been largely structural, ${ }^{9}$ Lippert and co-workers have investigated the photoreduction of trans$\left[\mathrm{Pt}(\right.$ bpy $\left.)\left(\mathrm{MeNH}_{2}\right)_{2}(\mathrm{OH})_{2}\right] \mathrm{Cl}_{2}$; after irradiation for several days (dose not stated), free $\mathrm{MeNH}_{3}{ }^{+}$was detected, indicating that amine dissociation had occured. ${ }^{7,10}$

Photoactivation of metal complexes can be used for triggering specific interactions between the metal complex and target macromolecules of biological relevance (such as DNA, RNA or proteins). ${ }^{11}$ Upon irradiation, photoactivable metal complexes can undergo ligand dissociation from the excited state, forming labile solvated species that are more reactive towards the target macromolecule. ${ }^{12}$ Light activation offers the advantage of temporal- and spatial-control of the active species in tissues, potentially reducing undesired secondary effects due to the toxicity of such species. It is notable that several complexes of d^{8} metal ions with α-diimine ligands have been reported to photosensitise the production of singlet oxygen $\left({ }^{1} \mathrm{O}_{2}\right)^{13-15}$ and so there is scope for the use of photoactivatable metal complexes in photodynamic therapy ${ }^{16}$ and for virucidal applications. ${ }^{17,18}$

The efficacy of photoactivatable metal complexes as potential anticancer agents depends strongly on their excited-state properties. The relative energies of singlet and triplet excited states influence the choice of the excitation wavelength, and determine the nature of the photoproducts, their mechanism of formation and the yield of ligand photodissociation. ${ }^{19}$ Density functional theory (DFT) and time-dependent DFT (TDDFT) are fundamental tools for rational design of metal-based drugs with tunable properties, since they can provide a description of electronic structures and excited states of metal complexes. ${ }^{20}$

Our recent approach has been to develop $\mathrm{Pt}^{\mathrm{IV}}$ complexes which can be reduced to cytotoxic $\mathrm{Pt}^{\text {II }}$ by photoactivation, selectively at a tumour site. ${ }^{21,22,23,24}$ For effective photochemotherapy of
non-surface tumours it is desirable to activate complexes with relatively long wavelengths of light since the penetration of light into tissue is wavelength-dependent. ${ }^{25}$ Furthermore, the use of visible light is less likely to cause damage of biological tissue. ${ }^{25 c, 26}$ Current photochemotherapy typically employs red light ($\sim 620 \mathrm{~nm}$) which is suitable for activation of established photodynamic agents. ${ }^{27}$ We are therefore investigating methods to achieve photoactivation of $\mathrm{Pt}^{\mathrm{TV}}$-azido complexes at a variety of wavelengths. Here we describe the synthesis and characterisation of new $\mathrm{Pt}^{\text {IV }}$ azido complexes 4-6 and their synthetic $\mathrm{Pt}^{\text {II }}$ precursors 1-3 (Figure 1); although complexes $\mathbf{1}$ and $\mathbf{2}$ have been previously reported ${ }^{18,28}$ we present here further characterisation, including x-ray crystallographic structures.

Results

Dichlorido $\mathrm{Pt}^{\mathrm{II}}$ compounds $\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{2}\right],\left[\mathrm{Pt}(\mathrm{phen}) \mathrm{Cl}_{2}\right]$ and trans $-\left[\mathrm{PtCl}_{2}(\mathrm{py})_{2}\right]$ were prepared by literature methods. ${ }^{29,30}$ The chloride ligands were then substituted by azido ligands by stirring the complexes with an excess of sodium azide in DMF. The reaction of complexes $\mathbf{1}-\mathbf{3}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acetic acid resulted in oxidation. ${ }^{31,32}$ The main products in all three cases were the monohydroxido, monoacetato species $\left[\operatorname{Pt}(\mathrm{L})\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OAc})(\mathrm{OH})\right]\left(\mathrm{L}=\right.$ bpy, phen, $\left.(\mathrm{py})_{2}\right)$, which were then readily converted to the diacetato complexes 4-6 by stirring in acetic anhydride.

Crystal Structures

Square-planar $\mathrm{Pt}^{\mathrm{II}}$ bipyridine and phenanthroline complexes (1 and 2) both crystallised in a monoclinic crystal system. In both systems deviation from square-planar geometry is observed; the angle(s) which the platinum azide group $\mathrm{Pt}-\mathrm{N}_{\alpha}$ makes with the plane defined by $\mathrm{N}_{\text {(ring) }}-\mathrm{Pt}-\mathrm{N}_{\text {(ring) }}$ is 1.54° for $\mathbf{1}$ (which contains a two-fold axis of symmetry) and 3.02° and 2.24° for $\mathbf{2}$. For $\mathbf{1}$, angles at the coordinated azide group $\left(\mathrm{Pt}-\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}\right)$ are $119.3(2)^{\circ}$ with $\mathrm{Pt}-\mathrm{N}_{\alpha}$ and $\mathrm{Pt}-\mathrm{N}_{(\text {ring })}$ bond lengths of 2.034(3) \AA and 2.008(3) \AA, respectively. For 2, angles at the coordinated azide group are 121.8(4) ${ }^{\circ}$ and $125.1(4)^{\circ}$ with $\mathrm{Pt}-\mathrm{N}_{\alpha}$ bond lengths of $2.022(6) \AA$ and $2.037(5) \AA$ and $\mathrm{Pt}-\mathrm{N}_{\text {(ring }}$ lengths of 2.011(6) \AA and 2.011(5) Å, respectively. Complex 3 also crystallised in a monoclinic crystal system containing a two-fold axis of symmetry. The geometry around the platinum centre is significantly distorted from square-planar geometry and the pyridine rings demonstrate positional disorder. The $\begin{array}{lcccccccr}\text { pyridine } & \text { ring } & \text { is } & \text { disordered } & \text { approximately } & \text { equally } & \text { over } & \text { two } \\ \text { orientations. } & \text { The } & \text { two } & \text { components } & \text { were } & \text { restrained } & \text { to have } & \text { similar } & \text { bond }\end{array}$ distances and angles. For 3, angles at the coordinated azide group $\left(\mathrm{Pt}-\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}\right)$ are $125.4(5)^{\circ}$ with
$\mathrm{N}_{\alpha}-\mathrm{Pt}-\mathrm{N}_{\alpha}$ angles and $\mathrm{Pt}-\mathrm{N}_{\alpha}$ bond lengths of $146.7(4)^{\circ}$ and 2.036(7) \AA respectively. For the structures and crystallographic parameters of $\mathbf{1 , 2}$ and $\mathbf{3}$ see Figure S 1 and Table 1 respectively.

Each of the $\mathrm{Pt}^{\mathrm{IV}}$ complexes (4-6) crystallised in a different crystal system and space group, however they all contain a two-fold axis of symmetry (Figure 2) and adopt approximate octahedral geometry; the $\mathrm{O}-\mathrm{Pt}-\mathrm{O}$ angles are $179.18(14)^{\circ}(\mathbf{4}), 165.12(19)^{\circ}(5)$ and 179.994° (6). $\mathrm{The} \mathrm{Pt}-\mathrm{N}_{\alpha}$ distances are $2.022(3) \AA, 2.032(4) \AA$ and $2.049(6) \AA$ respectively, and the $\mathrm{Pt}-\mathrm{N}_{(\text {ring })}$ distances $2.033(3) \AA, 2.052(4) \AA$ and $2.028(6) \AA$, respectively. The angles at the coordinated azide groups are $115.0(3)^{\circ}, 118.5(4)^{\circ}$ and $114.9(5)^{\circ}$, respectively. The crystallographic parameters are given in Table 1 and a selection of key bond lengths and angles are shown in Table 2.

In general, the structures optimized by DFT calculations are in good agreement with those obtained from X-ray crystallography. DFT tended to overestimate bond lengths of 1-6, particularly in the case of $\mathrm{Pt}-\mathrm{N}$ (bpy, phen, py) where distances are up to $0.06 \AA$ longer. In the case of complexes $\mathbf{1}$ and 2, the $\mathrm{Pt}-\mathrm{N}_{\alpha 1}$ and $\mathrm{Pt}-\mathrm{N}_{\alpha 2}$ bond lengths are underestimated. Optimising the geometry in the gas phase rather than the condensed phase is a possible source of this inconsistency ${ }^{33}$ although recent results suggest that this is unlikely to significantly affect the values ${ }^{34}$. DFT-calculated angles are within a few degrees of the X-ray values; the only exception being the angles relating to the azide ligands; for all complexes, X-ray and DFT gave differences in the orientation of the N_{3} groups although this is unlikely to be energetically significant. Data are summarized in the Supplementary Information (Tables S1-4).

Orbital Analysis

The $\mathrm{Pt}^{\mathrm{IV}}$ complexes $\mathbf{4}$ (bpy) and 5 (phen) have similar frontier orbitals, those of $\mathbf{4}$ are shown in Figure 3. The HOMOs of $\mathbf{4}$ and $\mathbf{5}$ are mainly azide-based, with a small contribution from Pt. The HOMO shows a bonding interaction between the two azide N_{α} atoms, while it is antibonding with respect to the $\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}$ and $\mathrm{Pt}-\mathrm{N}_{\alpha}$ bonds. The HOMO-1 is similar in shape to the HOMO, while the HOMO-2 is more diffuse, having contributions also from the acetate groups and the chelating ligand. The LUMO and LUMO+1 of $\mathbf{4}$ and 5 are strongly antibonding orbitals; the LUMO is antibonding towards the $\mathrm{Pt}-\mathrm{N}$ (azide) and $\mathrm{Pt}-\mathrm{N}($ bpy, phen) bonds, LUMO +1 is antibonding towards $\mathrm{Pt}-\mathrm{N}$ (azide) and $\mathrm{Pt}-\mathrm{O}(\mathrm{Ac})$ bonds. Higher in energy, the LUMO+2, LUMO+3 and LUMO+4 are all bpy- or phen-based. In complex 6 the HOMO is azide-centred. In the HOMO-1 and HOMO-2 the acetate character progressively increases, and the HOMO-3 is mainly acetate-based. In 6, the

LUMO has antibonding character for the $\mathrm{Pt}-\mathrm{N}$ (azide) bonds, while the LUMO +1 is antibonding towards both acetate and azide ligands. Both the LUMO+2 and LUMO +3 are py-centred.

The $\mathrm{Pt}^{\mathrm{II}}$ complexes show similar features in the frontier orbitals which play a significant role in the UV-vis spectra. However, there is a major and fundamental difference in the unoccupied orbitals. The LUMO and LUMO+1 of $\mathbf{1}$ and $\mathbf{2}$ are bpy- or phen-based π^{*} orbitals, those of $\mathbf{1}$ are shown in Figure 3. The lowest-energy antibonding orbital is LUMO+2 which lies ca. 1 eV above LUMO +1 . Complex $\mathbf{3}$ has orbitals that resemble those of $\mathbf{6}$, differing in that the LUMO has lost its antibonding character and the other empty orbitals are of higher energy.

UV-vis spectroscopy and TD-DFT singlet transitions

Computed UV-vis spectra of complexes $\mathbf{1}$ and $\mathbf{2}$ were in agreement with previously published data. ${ }^{18}$ Theoretical UV-vis spectra of $\mathbf{4 - 6}$ were calculated by TD-DFT with the CPCM solvent model and then overlaid with the experimental spectra which were recorded in water (Figure 4). The most representative electron density difference maps for the singlet transitions of 4-6 are also reported in Figure 4. Experimental and theoretical data are summarized in Tables 3-5.

Complex 4 shows a maximum at 250 nm and a pronounced shoulder around 310 nm ; a weak absorbance is also present at ca. 350 nm . Similarly, the main absorbance of $\mathbf{5}$ is at 272 nm and a shoulder, although significantly less pronounced, is visible at 300 nm . In addition, $\mathbf{5}$ has two weak bands in the range 330-360 nm. TD-DFT calculations performed without relativistic correction give satisfactory results in the case of $\mathbf{5}$, despite a small red shift in the absorbance energies. On the contrary, less satisfactory is the determination of the $310-\mathrm{nm}$ band intensity for 4 . However, the general character of the electronic transitions of $\mathbf{4}$ was confirmed by performing calculations with different software (see Computational Details and Supplementary Information). For both complexes, the lowest-energy absorbance is due to ligand-to-metal charge transfer (LMCT) ${ }^{23}$ states (state S6 for both $\mathbf{4}$ and 5), where electron density migrates from the acetate groups to the metal. At higher energy, the transitions composing the shoulder are a mixture of LMCT ($\mathrm{N}_{3} \rightarrow \mathrm{Pt}$) and ligand-to-ligand charge-transfer states (LLCT, $\mathrm{N}_{3} \rightarrow$ bpy, phen). LMCTs are predominant in $\mathbf{4}$, while LLCTs are predominant in 5 . The highest-energy bands are of mixed character in both complexes, and bpy and phen have marginal roles.
For complex 6, the band centred at 304 nm has an almost pure LMCT ($\mathrm{py} \rightarrow \mathrm{Pt}, \mathrm{N}_{3}$) character. ${ }^{35}$ TDDFT assigns the band at 260 nm to LLCT transitions (OAc \rightarrow py), but underestimates their
oscillator strength values. The $\lambda_{\max }$ of complex $\mathbf{6}$ is shifted towards the red region compared to complexes $\mathbf{4}$ and $\mathbf{5}$ which is due to the trans geometry of the azide ligands. ${ }^{36}$

Photochemistry of 4-6

Aqueous solutions of platinum (IV) complexes 4-6 (ca. $50 \mu \mathrm{M}$) were irradiated with UVA light (power ca. $1.5 \mathrm{~mW} / \mathrm{cm}^{2}$), and UV-visible spectra were recorded after $0,1,5,15,30$ and 60 min of irradiation (see Figure 5). Marked changes in the spectra occurred following irradiation. For 4 and 5, a large and weak band appeared at ca. 370 nm corresponding to formation of $\mathrm{Pt}^{\mathrm{II}}$ species, ${ }^{18}$ and a decrease in the UV band at ca. 250 nm was observed. Complex $\mathbf{6}$ behaved slightly differently since no absorption appeared at wavelengths longer than 350 nm upon irradiation, with a new band appearing at 250 nm while at 300 nm there was a significant decrease in absorbance. The pH of the non-buffered aqueous solutions of $\mathbf{4}, \mathbf{5}$ and $\mathbf{6}$ after 2 h UVA irradiation did not increase. Following irradiation of 6, ESI-MS analysis (positive ion mode) showed peaks corresponding to $\left[\mathrm{Pt}(\mathrm{OH})_{2}(\mathrm{py})_{2}\right.$ $+\mathrm{H}]^{+}$(obs: $388.4 \mathrm{~m} / \mathrm{z}$, calc: $388.1 \mathrm{~m} / \mathrm{z}$) and its fragment $\left[\mathrm{Pt}(\mathrm{OH})(\mathrm{py})_{2}\right]^{+}$(obs: $370.4 \mathrm{~m} / \mathrm{z}$, calc: 371.1 m / z) (see Figure S2).

Photoactivation studies of complexes 4-6 using visible (green) light ($514 \mathrm{~nm}, 60 \mathrm{~mW} / \mathrm{cm}^{2}$) were carried out on $1 \mathrm{mM} 90 \% \mathrm{D}_{2} \mathrm{O} / 10 \% \mathrm{~d}_{6}$-acetone solutions, acetone being used to aid dissolution. ${ }^{1} \mathrm{H}$ NMR spectra were recorded after $0,15,30$ and 60 min irradiation. Changes in the spectra for 4-6 were observed following irradiation with the acetate region providing the clearest picture of speciation; as judged by the free and bound acetate resonances (Figure 6). Complex 6 gave rise to free acetate the fastest, with ca. 85% reacting after only 15 min of irradiation, and after 30 min only a very small peak corresponding to bound acetate was visible. In contrast, only half of complexes $\mathbf{4}$ and 5 had reacted after 30 min , and after $60 \mathrm{minca} .40 \%$ of each of the original compounds remained.

Discussion

The standard protocol of using an aqueous solution of silver nitrate to remove chlorides from a $\mathrm{Pt}^{\mathrm{II}}$ centre to produce reactive aqua adducts reportedly produces oxygen-bridged dimers when ligands such as bipyridine or phenanthroline are present. ${ }^{37}$ For this reason we employed the method of direct substitution of chloride by azide in DMF. Problems were encountered while attempting to oxidise the $\mathrm{Pt}^{\mathrm{II}}$ complexes $\mathbf{1} \mathbf{- 3}$ by the method previously used to generate $\mathrm{Pt}^{\mathrm{IV}}$ azides $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right.$ added to an aqueous suspension of the $\mathrm{Pt}^{\mathrm{II}}$ diazide species) ${ }^{21,36,38}$ since complexes $\mathbf{1} \mathbf{- 3}$ required harsher
conditions to undergo oxidation. The use of acetic acid followed by acetic anhydride allowed us to oxidise these complexes and to synthesise the diacetato $\mathrm{Pt}^{\text {IV }}$ products 4-6 in good yield.

Although there are many examples of $\mathrm{Pt}^{\mathrm{IV}}$ bipyridine and phenanthroline compounds with halide or alkyl ligands ${ }^{39}$ complexes $\mathbf{4} \mathbf{- 6}$ appear to be the first reported $\mathrm{Pt}^{\mathrm{IV}}$ pyridine, phenanthroline and bis-pyridine azido complexes. The oxidation of the $\mathrm{Pt}^{\mathrm{II}}$-azido precursors is hindered by their sensitivity to both heat and light. In contrast, compounds such as $\left[\operatorname{Pt}(\mathrm{L}) \mathrm{R}_{2}\right](\mathrm{L}=$ bpy, phen; $\mathrm{R}=$ alkyl, aryl) are easily oxidised by $\mathrm{H}_{2} \mathrm{O}_{2},{ }^{39 g}$.h indeed such reactions are reported to proceed rapidly at room temperature. Ligands such as methyl form strong σ-bonds to $\mathrm{Pt}^{\mathrm{II}}$, raising the energy of the HOMO and thereby making the $\mathrm{Pt}^{\mathrm{II}}$ species more susceptible to oxidation. ${ }^{39 \mathrm{~h}}$ Oxidation of halogencontaining complexes $\left[\mathrm{Pt}(\mathrm{L}) \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ with $\mathrm{H}_{2} \mathrm{O}_{2}$ is much more difficult due to the greater ionic component in $\mathrm{Pt}-\mathrm{X}$ bonds and the resultant reduced donation of charge to the metal centre. Halido $\mathrm{Pt}^{\mathrm{IV}} \alpha$-diimine complexes have been produced by using oxidants such as $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and/or more forcing conditions (e.g. high temperature or photocatalysis). ${ }^{39 d-f, i}$ None of these synthetic routes are suitable for oxidising $\left[\mathrm{Pt}^{\mathrm{II}}(\mathrm{L})\left(\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{L}=\right.$ bpy, phen) diazido complexes to a $\mathrm{Pt}^{\text {IV }}$ complex with oxygen bound in axial positions. The preference for groups such as OH or OCOCH_{3} in the axial positions arises from their stabilising effect on $\mathrm{Pt}^{\mathrm{IV}}$, which is a desirable feature for potential photoactivatable prodrugs since compounds containing axial chloride ligands are often readily reduced in vivo without irradiation. ${ }^{10}$

The oxidation route we employed to synthesize the diacetato complexes, which proceeds via initial formation of the monohydroxido monoacetato species $\left[\operatorname{Pt}(\mathrm{L})\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OAc})(\mathrm{OH})\right](\mathrm{L}=$ bpy, phen, $(\mathrm{py})_{2}$) in $\mathrm{H}_{2} \mathrm{O}$ /acetic acid, is anticipated to occur with retention of the OH oxygen in the second step, in accordance with the literature. ${ }^{40}$ The oxidation step may proceed directly to the mixed $\mathrm{OH} / \mathrm{OAc}$ complex with participation from the acetate anion ${ }^{41}$ or via a dihydroxido species, followed by nucleophilic substitution of the acetate. If the oxidation occurs via the latter mechanism, the first step in the substitution is anticipated to be protonation of OH . Since only the monosubsituted species $\left[\mathrm{Pt}(\mathrm{L})\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OAc})(\mathrm{OH})\right]$ is isolated, this would imply that the $p \mathrm{~K}_{\mathrm{aH}}$ of the second axial hydroxido is lower than the $p \mathrm{~K}_{\mathrm{a}}$ of acetic acid (4.75). ${ }^{42}$

Crystal structures and DFT electrostatic potentials

The bond lengths and angles of complexes $\mathbf{1}$ and $\mathbf{2}$ (Tables S1 and S2) are comparable to similar reported structures. ${ }^{43,44}$ For a discussion of the crystal packing of $\mathbf{1}$ see the supporting information.

Complex 3 shows a significant distortion from square-planar geometry which can be attributed to steric interactions between the azide ligands and the pyridine rings. Deviations from
square planar towards tetrahedral geometry are common for $\mathrm{Pt}^{\mathrm{II}}$ complexes containing bulky or rigid ligands. ${ }^{45,46}$ Complex $\mathbf{3}$ is symmetrical with regard to the azido ligands, the bond lengths within the azido groups are consistent with those found in other azido compounds. ${ }^{47,48}$

The azide bond lengths and angles for complexes 4-6 (Table 2) compare well with other platinum azide structures. ${ }^{36}$ The $\mathrm{Pt}-\mathrm{N}_{\text {(ring) }}$ bond lengths of 4-6 are ca. $0.02-0.04 \AA$ longer than those of the corresponding $\mathrm{Pt}^{\text {II }}$ compounds ($\mathbf{1} \mathbf{- 3}$); a difference which has also been reported for $\left[\mathrm{Pt}^{\mathrm{IV}}(\text { bpy }) \mathrm{Cl}_{4}\right]^{9 \mathrm{~d}}$ and $\left[\mathrm{Pt}^{\mathrm{II}}(\right.$ bpy $\left.) \mathrm{Cl}_{2}\right] .{ }^{44}$

Distortion from ideal octahedral geometry occurs in all three $\mathrm{Pt}^{\mathrm{IV}}$ structures (4-6). The axial $\mathrm{Pt}-\mathrm{O}$ (acetate) bonds are bent with respect to the plane formed by the equatorial ligands in $\mathbf{4}$ and $\mathbf{5}$, possibly to minimise intramolecular repulsions; the bending of the axial acetate bond in similar $\mathrm{Pt}^{\mathrm{IV}}$ complexes has been attributed to intramolecular hydrogen bonding. ${ }^{49,50}$ The restricted bites of the chelating bipyridine and phenanthroline ligands (ca. 80°) in 4 and 5 also cause distortion. Complexes 4-6 contain intermolecular hydrogen-bonded networks, and some weak $\pi-\pi$ stacking exists between molecules of complex 5. Interestingly, complex 4 shows a weak $\mathrm{AcO} \cdots \mathrm{H}-\mathrm{C}$ (bpy) interaction which is not present in $\mathbf{5}$, where acetate groups are interacting with the π electrons of the phen ligand. Figure 7 shows the changes in the electrostatic potential surfaces of $\mathbf{2}$ and $\mathbf{5}$ due to such an interaction.

Photochemistry and TD-DFT

The photoreactions of $\mathrm{Pt}^{\mathrm{IV}}$ azide complexes are of interest due to the potential use of such complexes as photoactivated anticancer agents. ${ }^{36}$

Absence of isosbestic points indicates that more than one photoproduct is obtained by irradiation. According to calculations and experimental work done on similar systems, ${ }^{51}$ it is reasonable to assume that both azide and acetate ligands can easily be displaced by solvent molecules upon irradiation. In fact, the strongly antibonding character of LUMO and LUMO+1 suggests that all the transitions having contributions from such orbitals are dissociative. As shown in Figure 6, formation of free acetate in irradiated samples can be easily monitored by ${ }^{1} \mathrm{H}$ NMR. Furthermore, ligand dissociation can be confidently associated with reduction of $\mathrm{Pt}^{\mathrm{IV}}$ to $\mathrm{Pt}^{\mathrm{II}}$, consistent with the appearance of the MLCT-like absorption at 370 nm (for $\mathbf{4}$ and 5) and the reported behaviour of $\left[\mathrm{Pt}^{\mathrm{IV}}(\mathrm{bpy}) \mathrm{Cl}_{4}\right]{ }^{39 \mathrm{c}}$

The UV-vis spectra of complexes $\mathbf{4}$ and $\mathbf{5}$ after 2 h UVA irradiation were remarkably similar to those reported ${ }^{52}$ for $\left[\mathrm{Pt}(\mathrm{L})(\mathrm{OH})_{2}\right]$ and $\left[\{\mathrm{Pt}(\mathrm{L})(\mu-\mathrm{OH})\}_{2}\right](\mathrm{L}=$ bpy, phen) suggesting that these were significant photoproducts. ESI-MS of irradiated solutions of $\mathbf{6}$ revealed that the py ligands can
be retained as the acetate is lost, with species such as $\left[\mathrm{Pt}(\mathrm{OH})_{2}(\mathrm{py})_{2}+\mathrm{H}\right]^{+}$detected (Figure S2); such aqua adducts would be effective for DNA binding if photoactivation is carried out in vivo. No dimers were observed, perhaps hindered by the trans geometry.

The lack of increase in pH of the solutions of 4-6 after 2 h UVA irradiation is in contrast to solutions of analogous $\mathrm{Pt}^{\mathrm{IV}}$-azido compounds containing NH_{3} ligands for which a sharp increase in pH to >10 was seen under similar conditions. ${ }^{51}$ We suggest that this is because continued irradiation of the NH_{3}-containing complexes results in release of the coordinated ammine; it is not clear whether bpy, phen and py are released on continued irradiation, but they are significantly less basic than NH_{3}.

Complexes 4-6 underwent photoreaction with green light (514 nm) giving rise to free acetate. Although the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{4}$ clearly show an NMR peak for the released acetate, irradiation of 5 and $\mathbf{6}$ produced more complicated spectra, possibly due to formation of significant mono-acetato Pt intermediates or through weak electrostatic interactions of the free acetate with the photoproducts. Although the absorbance in the UV-vis spectrum at 514 nm for all three complexes is very low, the photodissociative behaviour may be explained by the computed singlet transitions in Table 6. Low-energy transitions of a highly dissociative nature exist for complexes 4-6 (all involving LUMO and LUMO+1) despite the very small oscillator strengths; excitation of these transitions with green light can evidently still produce ligand dissociation.

Experimental

Methods and Materials

Materials. Silver nitrate, pyridine (py), d_{6}-acetone, d_{6}-DMSO, $\mathrm{D}_{2} \mathrm{O}$ and 1,4 -dioxane were purchased from Aldrich, $\mathrm{NaN}_{3}, \mathrm{HCl}(37 \%)$, acetic anhydride and acetic acid (> 99\%) from Fisher, $\mathrm{H}_{2} \mathrm{O}_{2}$ and 1,10-phenanthroline (phen) from Sigma, $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ from Alfa Aesar, and 2,2'-bipyridine (bpy) from Acros.
NMR Spectroscopy. NMR spectra were recorded at 298 K on a Bruker DMX500 (${ }^{1} \mathrm{H}: 500.13$ MHz) magnet. Samples were prepared in d_{6}-acetone, d_{6}-DMSO, $\mathrm{D}_{2} \mathrm{O}$ or $90 \% \mathrm{H}_{2} \mathrm{O} / 10 \% \mathrm{D}_{2} \mathrm{O}$ with ${ }^{1} \mathrm{H}$ chemical shifts referenced internally to dioxane ($\delta 3.75 \mathrm{ppm}$ in $\mathrm{D}_{2} \mathrm{O} ; \delta 3.764 \mathrm{ppm}$ for $90 \% \mathrm{H}_{2} \mathrm{O}$ / $10 \% \mathrm{D}_{2} \mathrm{O}$). All data were processed with XWIN-NMR software (Version 3.6, Bruker, UK Ltd.). All J values are quoted in Hz .
Mass Spectrometry. Positive ion electrospray mass spectrometry (ESI-MS) was performed on a Platform II Mass Spectrometer (Micromass, Manchester, UK). The capillary voltage was 3.5 V and the cone voltage typically varied between 5 and 30 V . The source temperature was adjusted
depending on the solvent. Data were acquired and processed with Mass Lynx (Version 2.0) software.

UV-visible Spectroscopy. UV-visible electronic absorption spectra were recorded on a Varian Cary 300 UV-visible spectrophotometer in 1-cm path-length cuvettes. Data were processed with Microcal Origin 5.0.

Light Sources. The ultraviolet light source used for photochemical studies was a broadband UVA lamp (2 x 15 W tubes, model VL-215L; Merck Eurolab, Poole, UK) which operated with a maximum output at 365 nm . Samples were irradiated at a distance of 10 cm from the lamp, where the power was ca. $1.5 \mathrm{~mW} / \mathrm{cm}^{2}$, delivering a dose of $10 \mathrm{~J} / \mathrm{cm}^{2}$ over 2 h . The laser (Coherent Innova 70C Spectrum) used for irradiation at 514 nm was equipped with a fibre optic (FT-600-UMT, $\varnothing=$ $600 \mu \mathrm{~m}$; Elliot Scientific) to enable delivery of light to a sample in the NMR probe. The fibre optic was placed 2 mm above the solution in the NMR tube at which distance the power ($\mathrm{ca} .60 \mathrm{~mW} / \mathrm{cm}^{2}$) was measured with a Coherent Fieldmate power meter (OP2-VIS head).
$\mathbf{p H}$ Measurements. pH values were measured with an Orion 710A pH meter equipped with a chloride-free micro-combination electrode (Aldrich) calibrated with Aldrich standard buffers (pH 4 , 7 and 10).
X-ray Crystallography. Diffraction data were collected with $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71073 \AA)$ on a Bruker Smart Apex CCD diffractometer equipped with an Oxford Cryosystems low-temperature device operating at 150 K . Data were corrected for absorption using the program SADABS. ${ }^{53}$ The crystal structures of $\mathbf{1 , 4}$ and $\mathbf{5}$ were solved by Patterson methods (SHELXS ${ }^{54}$ or DIRDIF ${ }^{55}$) The structures of 2, $\mathbf{3}$ and $\mathbf{6}$ were solved by direct methods (DIRDIF 55 or SIR92 ${ }^{56}$). All structures were refined against F^{2} using SHELXL ${ }^{54}$ or CRYSTALS. ${ }^{57}$ The crystal structures of $\mathbf{1}-\mathbf{6}$ have been deposited in the Cambridge Crystallographic Data Centre under the accession numbers CCDC $709183,709182,709184,709185,709186$ and 709187 respectively, and the cif files are available in the Supplementary Information. ORTEP diagrams were generated using ORTEP $3 \mathrm{v} 2^{58}$ and POVRay 3.6. ${ }^{59}$
Computational details. The calculations were generally performed with the Gaussian 03 (G03) program ${ }^{60}$ employing the DFT method, Becke three-parameter hybrid exchange functional ${ }^{61}$ and Lee-Yang-Parr's gradient corrected correlation functional ${ }^{62}$ (B3LYP). The LanL2DZ basis set ${ }^{63}$ and effective core potential were used for the Pt atom and the $6-31 \mathrm{G}^{* *}$ basis set ${ }^{64}$ was used for all other atoms. Geometry optimizations of $\mathbf{1 - 6}$ in the ground state were performed in the gas phase from the x-ray crystallographic structure and the nature of all stationary points was confirmed by normal mode analysis. The conductor-like polarizable continuum model method (CPCM) ${ }^{65}$ with water as
solvent was used to calculate the electronic structure and the excited states of 1-6 in solution. Thirty-two singlet excited states and the corresponding oscillator strengths were determined with a Time-dependent Density Functional Theory (TD-DFT) ${ }^{66}$ calculation. The computational results are summarized in Tables 3-5 and in the Supplementary Information, where only electronic transitions with an oscillator strength value (f) higher than 0.01 are reported. The electronic distribution and the localization of the singlet excited states were visualized using the electron density difference maps (EDDMs). ${ }^{67}$ GaussSum 1.05^{68} was used for EDDMs calculations and for the electronic spectrum simulation.

Additional geometry optimizations and energy calculations on 4 were performed using the Amsterdam Density Functional 2007 program (ADF) at the gradient-corrected density functional theory (DFT) level using BP86 functional in combination with the TZP basis sets. ${ }^{69}$ A small frozen core was used for efficient treatment of the inner atomic shells. Uncontracted Slater-type orbitals (STOs) were used as basis functions. Relativistic effects were considered by the zeroth-order regular approximation (ZORA). Electronic excitation energies were computed with the asymptotically correct XC potential obtained with the statistical average of (model) orbital potentials $(\mathrm{SAOP})^{70}$ using scalar relativistic Time-Dependent Density Functional Theory (TDDFT) in the ADF program.

Syntheses. Caution! No problems were encountered during this work, however heavy metal azides are known to be shock sensitive detonators, therefore it is essential that any platinum azide compound is handled with care.
$\left[\mathbf{P t}(\mathbf{b p y})\left(\mathbf{N}_{3}\right)_{2}\right](\mathbf{1}) .\left[\mathrm{Pt}(\mathrm{bpy}) \mathrm{Cl}_{2}\right](98.5 \mathrm{mg})$ was prepared from $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ and 2,2 -bipyridine in an 89% yield by the literature method. ${ }^{29}$ The isolated product was suspended in DMF (15 mL) and $\mathrm{NaN}_{3}(0.152 \mathrm{~g}, 2.14 \mathrm{mmol})$ added. After stirring at 298 K in the dark for 3 d , the volume was reduced to $1-2 \mathrm{~mL}$ and $\mathrm{H}_{2} \mathrm{O}$ added to precipitate the product. $\left[\mathrm{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}\right.$] was collected by filtration, washed with water, ethanol and diethyl ether, then dried under vacuum ($93.1 \mathrm{mg}, 91.7 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$; d_{6}-DMSO; dioxane) $8.91\left(\mathrm{~d}, \mathrm{H}_{6,6},{ }^{1}{ }^{1} J_{5,6} 5.7,2 \mathrm{H}\right), 8.57\left(\mathrm{~d}, \mathrm{H}_{3,3^{\prime}},{ }^{1} J_{3,4} 8.0,2 \mathrm{H}\right), 8.40(\mathrm{t}$, $\left.\mathrm{H}_{4,4^{\prime}},{ }^{1} J_{4,5} 7.7,2 \mathrm{H}\right), 7.82\left(\mathrm{t}, \mathrm{H}_{5,5}, 2 \mathrm{H}\right)$. Crystals suitable for X-ray structure determination were grown from DMF at 277 K .
$\left[\mathbf{P t}(\mathbf{p h e n})\left(\mathbf{N}_{3}\right)_{2}\right]$ (2). The synthesis of $\left[\operatorname{Pt}(\mathrm{phen}) \mathrm{Cl}_{2}\right]$ and $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}\right]$ was carried out by a similar method as described for the corresponding 2,2'-bipyridine complexes. From [$\left.\mathrm{Pt}(\mathrm{phen}) \mathrm{Cl}_{2}\right](100 \mathrm{mg})$ obtained 2 ($85.2 \mathrm{mg}, 82.8 \%$). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$; d_{6}-DMSO, dioxane): 9.20 (d, $\mathrm{H}_{2,9},{ }^{1} J 5.3,2 \mathrm{H}$), $9.02(\mathrm{~d}$,
$\left.\mathrm{H}_{4,7},{ }^{1}{ }^{\mathrm{J}} 8.3,2 \mathrm{H}\right), 8.28\left(\mathrm{~s}, \mathrm{H}_{5,6}, 2 \mathrm{H}\right), 8.14\left(\mathrm{~d}, \mathrm{H}_{3,8}, 2 \mathrm{H}\right)$. Crystals suitable for X-ray structure determination were grown from DMF at 277 K .
Trans- $\left[\mathbf{P t}\left(\mathbf{N}_{3}\right)_{2}(\mathbf{p y})_{2}\right]$ (3). Trans- $\left[\mathrm{PtCl}_{2}(\mathrm{py})_{2}\right](166.5 \mathrm{mg})$ was synthesised by the literature method ${ }^{30}$ and converted to the diazido complex $3(162.6 \mathrm{mg}, 94.7 \%)$ by the same method used for preparation of $\mathbf{1}$ and 2. δ_{H} (500 MHz ; d_{6}-acetone, dioxane): 8.86 ($\mathrm{dd}, \mathrm{H}_{\mathrm{o}},{ }^{1} J_{\mathrm{om}} 6.6,{ }^{2} J_{\mathrm{opp}} 1.7,4 \mathrm{H}$), $8.12\left(\mathrm{tt}, \mathrm{H}_{\mathrm{p}},{ }^{1} J_{\mathrm{p}, \mathrm{m}} 7.7,2 \mathrm{H}\right), 7.67\left(\mathrm{dd}, \mathrm{H}_{\mathrm{m}}, 4 \mathrm{H}\right) . \lambda_{\max }(\mathrm{DMF}) / \mathrm{nm}: 273\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1} 14500\right)$ and 328 sh (3456). Crystals suitable for X-ray structure determination were grown from pyridine at 277 K .

Trans, cis-[Pt(bpy)(OAc) $\left.\mathbf{2}_{\mathbf{2}}\left(\mathbf{N}_{3}\right)_{2}\right] \mathbf{(4)}$. $\left[\operatorname{Pt}(b p y)\left(\mathrm{N}_{3}\right)_{2}\right](10.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ was suspended in acetic acid ($>99 \%, 4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.23 \mathrm{mmol}, 17 \mu \mathrm{~L})$ added. After stirring at 298 K for 2 h , all the solvent was removed from the bright orange solution and acetic anhydride (3 mL) added. After stirring at 298 K for 3 d the solution was again reduced to dryness and ice-cold $\mathrm{H}_{2} \mathrm{O}$ added. The yellow solid was collected by filtration, washed with water, ethanol and ether and dried under vacuum. Crystallisation from a 50:50 acetone/water solution at 277 K gave $\mathbf{4}(7.3 \mathrm{mg}, 57.4 \%)$. $\lambda_{\max }$ $\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm}: 250\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1} 19100\right), 304$ (11400) and 315 (9760). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{d}_{6}\right.$-acetone, dioxane): 9.30 ($\mathrm{d}, \mathrm{H}_{6,6^{\prime}},{ }^{1} J_{5,6} 5.9,2 \mathrm{H}$), 8.69 (d, $\mathrm{H}_{3,3^{\prime}},{ }^{1} J_{3,4} 7.9,2 \mathrm{H}$), 8.47 (t, $\left.\mathrm{H}_{4,4^{4}},{ }^{1} J_{4,5} 7.9,2 \mathrm{H}\right), 8.04$ $\left(\mathrm{t}, \mathrm{H}_{5,5^{\prime}}, 2 \mathrm{H}\right), 1.65\left(\mathrm{~s}, \mathrm{CH}_{3}, 6 \mathrm{H}\right)$. ESI-MS $m / z: 554.1[\mathrm{M}+\mathrm{H}]^{+} ; 576.0[\mathrm{M}+\mathrm{Na}]^{+}$. Crystals suitable for X-ray structure determination were grown from water at 277 K .
Trans, cis-[$\left.\mathbf{P t}(\mathbf{p h e n})(\mathbf{O A c})_{2}\left(\mathbf{N}_{3}\right)_{2}\right]$ (5). Synthesised from 2 by the oxidation method outlined for synthesis of 4. Crystals suitable for structure determination were grown from $\mathrm{H}_{2} \mathrm{O}$ at 277 K . Yield of 5: $4.7 \mathrm{mg}, 42.4 \%$. UV-vis ($\left.\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm}: 272\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1} 17900\right)$, 300sh (5840), 337 (1060) and 352 (796). $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$; d_{6}-acetone, dioxane): 9.56 (d, $\left.\mathrm{H}_{2,9},{ }^{1} J 5.5,2 \mathrm{H}\right), 9.06\left(\mathrm{~d}, \mathrm{H}_{4,7},{ }^{1} J 8.1,2 \mathrm{H}\right)$, $8.39\left(\mathrm{~s}, \mathrm{H}_{5,6}, 2 \mathrm{H}\right), 8.36\left(\mathrm{~d}, \mathrm{H}_{3,8}, 2 \mathrm{H}\right), 1.56\left(\mathrm{~s}, \mathrm{CH}_{3}, 3 \mathrm{H}\right)$. ESI-MS m/z: $578.3[\mathrm{M}+\mathrm{H}]^{+}, 600.3[\mathrm{M}+$ $\mathrm{Na}]^{+}, 616.4[\mathrm{M}+\mathrm{K}]^{+}$.
Trans, trans, trans-[Pt(OAc) $\left.\mathbf{2}_{\mathbf{2}}\left(\mathbf{N}_{3}\right)_{2}(\mathbf{p y})_{2}\right]$ (6). Synthesised from 3 by the oxidation method outlined for synthesis of $\mathbf{4}$. Yield of $\mathbf{6}: 6.7 \mathrm{mg}, 56.9 \%$. Crystals suitable for structure determination were grown from $\mathrm{H}_{2} \mathrm{O}$ at 277 K . UV-vis $\left(\mathrm{H}_{2} \mathrm{O}\right) / \mathrm{nm}: 259\left(\varepsilon / \mathrm{M}^{-1} \mathrm{~cm}^{-1} 12500\right)$ and 307 (16900). $\delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{d}_{6}$-acetone, dioxane) : $8.95\left(\mathrm{~d}, \mathrm{H}_{\mathrm{o}},{ }^{1} J 5.9,4 \mathrm{H}\right), 8.30\left(\mathrm{t}, \mathrm{H}_{\mathrm{p}},{ }^{1} J 7.5,2 \mathrm{H}\right), 7.83\left(\mathrm{t}, \mathrm{H}_{\mathrm{m}}, 4 \mathrm{H}\right), 1.92$ (s, $\mathrm{CH}_{3}, 6 \mathrm{H}$). ESI-MS m/z: $556.4[\mathrm{M}+\mathrm{H}]^{+}, 578.3[\mathrm{M}+\mathrm{Na}]^{+}, 594.5[\mathrm{M}+\mathrm{K}]^{+}$.

Conclusions

Complexes 4-6 are the first reported examples of $\mathrm{Pt}^{\mathrm{IV}}$-azido complexes which contain phenanthroline, bipyridine and bispyridine ligands. The x-ray crystal structures of these complexes show near-octahedral geometry for $\mathbf{4}$ and $\mathbf{6}$, with a significant distortion of the axial groups to give a

O-Pt-O angle of 165.12° for complex 5. Irradiation of complexes 4-6 with both UVA (365 nm) and green $(514 \mathrm{~nm})$ light results in reduction of the complexes to $\mathrm{Pt}^{\mathrm{II}}$ species, with release of one or both of the axial acetate ligands. Generation of reactive aqua species (through azide release) provides promising novel mechanisms for cytotoxic activity against cancer cells. Irradiation of complexes 4-6 in water is not accompanied by a large increase in pH as was detected for the previously-reported ammine complex cis, trans, cis- $\left[\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$, ${ }^{51}$ probably due to the reduced lability of the α-diimine ligands on photoactivation, compared to NH_{3}, in agreement with the mass spectrometric data. TDDFT calculations enabled us to show the presence of strongly dissociative low energy transitions for complexes 4-6 since we could identify key orbitals and excited states, their relative positions and dependence on the nature of the ligands. In future work we hope to predict the electronic properties of complexes prior to synthesis. This will allow us to focus our efforts on compounds which exhibit the most appropriate absorption bands.

Acknowledgement. This work was supported by a Scottish Enterprise Proof of Concept Award, by the MRC (G0701062) for N.F., the EPSRC (EP/E000945X) for H-C. T. and the EU (EU FP7 Marie Curie Fellowship Action IEF 220281 PHOTORUACD) for L.S. We thank members of the EU COST Action D39 for stimulating discussions.

References

(1) M. L. Muro, S. Diring, X. Wang, R. Ziessel and F. N. Castellano, Inorg. Chem., 2008, DOI:10.1021/ic800316x
(2) B-C. Tzeng, W-F. Fu, C-M. Che, H-Y. Chao, K-K. Cheung and S-M. Peng, Dalton Trans., 1999, 6, 1017-1023.
(3) K. M-C. Wong, W-S. Tang, B. W-K. Chu, N. Zhu and V. W-W. Yam, Organometallics, 2004, 23, 3459-3465.
(4) M. Cocchi, D. Virgili, C. Sabatini, V. Fattori, P. Di Marco, M. Maestri and J. Kalinowski, Synth. Mater., 2004, 147, 253-256.
(5) E. A. M. Geary, L. J. Yellowlees, L. A. Jack, I. D. H. Oswald, S. Parsons, N. Hirata, J. R. Durrant and N. Robertson, Inorg. Chem., 2005, 44, 242-250.
(6) a) E. Wong and C. M. Giandomenico, Chem. Rev., 1999, 99, 2451-2466; b) N. Jain, R. Mittal, K. S. Ray, T. S. Srivastava and R. K. Bhattacharya, J. Inorg. Biochem., 1987, 31, 57-64; c) L. Kumar, N. R. Kandasamy, T. S. Srivastava, A. J. Amonkar, M. K. Adwankar and M. P. Chitnis, J.

Inorg. Biochem., 1985, 23, 1-11; d) N. Jain, R. Mittal, T. S. Srivastava, K. Satyamoorthy and M. P. Chitnis, J. Inorg. Biochem., 1994, 53, 79-94; e) H. Mansuri-Torshizi, T. S. Srivastava, H. K. Parekh and M. P. Chitnis, J. Inorg. Biochem., 1992, 45, 135-148; f) A. Gund and B. K. Keppler, Angew. Chem. Int. Ed., 1994, 33, 186-188. g) H. Mansuri-Torshizi, S. Ghadimy and N. Akbarzadeh, Chem. Pharm. Bull., 2001, 49, 1517-1520.
(7) S. Dhar, Z. Liu, J. Thomale, H. Dai and S. J. Lippard, J. Am. Chem. Soc., 2008, 130, 11467-11476.
(8) M. D. Hall, H. R. Mellor, R. Callaghan and T. W. Hambley, J. Med. Chem., 2007, 50, 3403-3411.
(9) a) M. G. Hill, J. A. Bailey, V. M. Miskowski and H. B. Gray, Inorg. Chem., 1996, 35, 4585-4590; b) A. J. Canty, J. L. Hoare, J. Patel, M. Pfeffer, B. W. Skelton and A. H. White, Organometallics, 1999, 18, 2660-2667; c) G. M. Kapteijn, M. D. Meijer, D. M. Grove, N. Veldman, A. L. Spek and G. van Koten, Inorg. Chim. Acta., 1997, 264, 211-217; d) T. W. Hambley, Acta Cryst., 1986, C42, 49-51.
(10) Y. Nakabayashi, A. Erxleben, U. Létinois, G. Pratviel, B. Meunier, L. Holland and B. Lippert, Chem. Eur. J., 2007, 13, 3980-3988.
(11) L. Zayat, C. Calero, P. Albores, L. Baraldo and R. Etchenique, J. Am. Chem. Soc., 2003, 125, 882-883.
(12) D. V. Pinnick and B. Durham, Inorg. Chem., 1984, 23, 1440-1445.
(13) V. Anbalagan and T. S. Srivastava, J. Photochem. Photobiol., 1992, 66A, 345-353.
(14) V. Anbalagan and T. S. Srivastava, J. Photochem. Photobiol., 1994, 77A, 141-148.
(15) V. Anbalagan and T. S. Srivastava, J. Photochem. Photobiol., 1995, 89A, 113-119.
(16) V. Anbalagan, J. Coord. Chem., 2003, 56, 161-172.
(17) G. D. Cuny, K. D. Landgrebe and T. P. Smith, Bioorg. Med. Chem. Lett., 1999, 9, 237-240.
(18) S. Shukla, S. S. Kamath and T. S. Srivastava, J. Photochem. Photobiol., 1988, 44A, 143-152.
(19) a) L. Salassa, C. Garino, G. Salassa, R. Gobetto and C. Nervi, J. Am. Chem. Soc., 2008, 130, 9590-9597; b) A.. Vlček, Coord. Chem. Rev., 1998, 177, 219-256; c) A. Gabrielsson, S. Záliš, P. Matousek, M. Towrie and A. Vlček, Inorg. Chem., 2004, 43, 7380-7388; d) K. Karidi, A. Garoufis, A. Tsipis, N. Hadjiliadis, H. den Dulk and J. Reedijk, Dalton Trans., 2005, 7, 1176-1187; e) B. D. Dunietz, A. Dreuw and M. Head-Gordon, J. Phys. Chem. B, 2003, 107, 5623-5629; f) F. De Angelis, R. Car and T. G. Spiro, J. Am. Chem. Soc., 2003, 125, 15710-15711.
(20) a) A. Vlček and S. Záliš, Coord. Chem. Rev., 2007, 251, 258-287; b) L. Salassa, C. Garino, A. Albertino, G. Volpi, C. Nervi, R. Gobetto and K. I. Hardcastle, Organometallics, 2008, 27, 1427-1435; c) C. Garino, T. Ruiu, L. Salassa, A. Albertino, G. Volpi, C. Nervi, R. Gobetto and K. I. Hardcastle, Eur. J. Inorg. Chem. 2008, 23, 3587-3591.
(21) F. S. Mackay, S. A. Moggach, A. Collins, S. Parsons and P. J. Sadler, Inorg. Chim. Acta, 2008, DOI:10.1016/j.ica.2008.02.039
(22) F. S. Mackay, J. A. Woods, P. Heringová, J. Kašparková, A. M. Pizzaro, S. A. Moggach, S. Parsons, V. Brabec and P. J. Sadler, Proc. Natl. Acad. Sci. USA, 2007, 104, 20743-20748.
(23) P. J. Bednarski, F. S. Mackay and P. J. Sadler, Anti-Cancer Agents Med. Chem., 2007, 7, 75-93.
(24) N. J. Farrer and P. J. Sadler, Aust. J. Chem., 2008, 61, 669-674
(25) a) R. Bonnett in Metal Complexes for Photodynamic Therapy, Comprehensive Coord. Chem. II, ed. J. A. McCleverty and T. J. Meyer, Elsevier, Oxford, 2004, 9, 945-1003; b) T. J. Dougherty and S. L. Marcus, Eur. J. Cancer, 1992, 28A, 1734̃1742; c) L. Brancaleon and H. Moseley, Lasers Med. Sci., 2002, 17, 173-186.
(26) V. Nikolenko, R. Yuste, L. Zayat, L. M. Baraldo and R. Etchenique, Chem. Commun., 2005, 13, 1752-1754.
(27) T. J. Dougherty, Adv. Photochem., 1992, 17, 275.
(28) K. Bowman and Z. Dori, Inorg. Chem., 1970, 9, 395-397.
(29) G. R. Newkome, K. J. Theriot, F. R. Fronczek and B. Villar, Organometallics, 1989, 8, 2513-2523.
(30) G. B. Kauffman, Inorg. Synth., 1963, 7, 249-253.
(31) Y. -A. Lee, K. H. Yoo and O. -S. Jung, Bull. Chem. Soc. Jpn., 2003, 76, 107-110.
(32) S. Ren, L. Cai and B. M. Segal, Dalton Trans., 1999, 9, 1413-1422.
(33) R. K. Hocking, R. J. Deeth and T. W. Hambley, Inorg. Chem., 2007, 46, 8238-8244.
(34) R. J. Deeth, H-C. Tai, unpublished work.
(35) A. Vogler, A. Kern and J. Hüttermann, Angew. Chem. Int. Ed. Engl., 1978, 17, 524-525.
(36) F. S. Mackay, J. A. Woods, H. Moseley, J. Ferguson, A. Dawson, S. Parsons and P. J. Sadler,

Chem. Eur. J., 2006, 12, 3155-3161.
(37) S. Wimmer and P. Castan, Inorg. Chim. Acta, 1988, 142, 13-15.
(38) P. Müller, B. Schröder, N. A. Kratochwil, R. A. Coxall, A. Parkin, S. Parsons and P. J. Sadler, Angew. Chem. Int. Ed., 2003, 42, 335-339.
(39) a) K. D. Hodges and J. V. Rund, Inorg. Chem., 1975, 14, 525-528; b) A. Peloso, Dalton Trans., 1976, 11, 984-988; c) A. Vogler and H. Kunkely, Angew. Chem. Int. Ed. Engl., 1982, 21, 209-210; d) K. -T. Aye, J. J. Vittal and R. J. Puddephatt, Dalton Trans., 1993, 1835-1839; e) V. V. Rostovtsev, L. M. Henling, J. A. Labinger and J. E. Bercaw, Inorg. Chem., 2002, 41, 3608-3619; f) F. P. Fanizzi, G. Natile, M. Lanfranchi, A. Tiripicchio, F. Laschi and P. Zanello, Inorg. Chem., 1996, 35, 3173-3182; g) M. Rashidi, M. Nabavizadeh, R. Hakimelahi and S. Jamali, Dalton Trans., 2001, 23, 3430-3434; h) K.; Thorshaug, I. Fjeldahl, C. Romming and M. Tilset, Dalton Trans., 2003, 21, 4051-4056; i) S. Whang, T. Estrada and P. E. Hoggard, Photochem. Photobiol., 2004, 79, 356-359.
(40) C. M. Giandomenico, M. J. Abrams, B. A. Murrer, J. F. Vollano, M. I. Rheinheimer, S. B.Wyer, G. E. Bossard and J. D. Higgins, Inorg. Chem., 1995, 34, 1015-1021.
(41) G. Tamasi, R. Cini, F. P. Intini, M. F. Sivo and G. Natile, Angew. Chem. Int. Ed., 2004, 43, 5081-5084.
(42) CRC Handbook of Chemistry and Physics, $60^{\text {th }}$ Ed, Eds. R. C. Weast, M. K. Astle, 1979, D165.
(43) W. B. Connick, L. M. Henling, R. E. Marsh and H. B. Gray, Inorg. Chem., 1996, 35, 6261-6265.
(44) R. S. Osborn and D. Rogers, Dalton Trans., 1974, 9, 1002-1004.
(45) D. J. Darensbourg, T. J. Decuir, N. W. Stafford, J. B. Robertson, J. D. Draper, J. H. Reibenspies, A. Kathó and F. Joó, Inorg. Chem., 1997, 36, 4218-4226.
(46) A. Miedaner, J. W. Raebiger, C. J. Curtis, S. M. Millar and D. L. DuBois, Organometallics, 2004, 23, 2670-2679.
(47) H. Maag and R. M. Rydzewski, J. Org. Chem., 1992, 57, 5823-5831.
(48) J. Ribas, M. Monfort, C. Diaz, C. Bastos and X. Solans, Inorg. Chem., 1994, 33, 484-489.
(49) S. Neidle, C. F. Snook, B. A. Murrer and C. F. J. Barnard, Acta Cryst., 1995, C51, 882-884.
(50) K. M. Kim, Y-A. Lee, S. S. Lee and Y. S. Sohn, Inorg. Chim. Acta, 1999, 292, 52-56.
(51) L. Ronconi and P. J. Sadler, Chem. Commun., 2008, 2, 235-237.
(52) S. Wimmer, P. Castan, F. L. Wimmer and N. P. Johnson, Dalton Trans., 1989, 3, 403-412.
(53) G. M. Sheldrick, SADABS, University of Göttingen, Göttingen (Germany), 2004.
(54) G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.
(55) P. T. Beurskens, G. Beurskens, W. P. Bosman, R. de Gelder, S. Garcia Granda, R. O. Gould, R. Israel and J. M. M. Smits, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, 1996.
(56) A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Cryst., 1994, 27, 435-436.
(57) P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout and J. Watkin, J. Appl. Cryst., 2003, 36, 1487.
(58) L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565.
(59) Available to download from http://www.povray.org/download/
(60) M. J. Frisch, G.W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J.M.Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,G. Liu,A. Liashenko, P. Piskorz, I. Komaromi, R. L.Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,M. Challacombe, P.M.W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision D.01), Gaussian, Inc., Wallingford, CT, 2004.
(61) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
(62) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
(63) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
(64) A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
(65) a) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681; b)
M. Cossi and V. Barone, J. Chem. Phys., 2001, 115, 4708-4717; c) V. Barone and M. Cossi, J.

Phys. Chem. A, 1998, 102, 1995-2001.
(66) a) M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439-4449; b) R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-8224.
(67) W. R. Browne, N. M. O'Boyle, J. J. McGarvey and J. G. Vos, Chem. Soc. Rev., 2005, 34, 641-663.
(68) N. M. O'Boyle and J. G. Vos, GaussSum, Dublin City University. Available at http://gausssum.sourceforge.net., 2005.
(69) G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders and T. Ziegler, J. Comput. Chem., 2001, 22, 931-967.
(70) P. R. T. Schipper, O. V. Gritsenko, S. J. A. van Gisbergen and E. J. Baerends, J. Chem. Phys., 2000, 112, 1344-1352.

Tables

Table 1. Crystallographic data for $\left[\operatorname{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}\right](\mathbf{1}),\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}\right](\mathbf{2})$, trans-[Pt($\left.\left.\mathrm{N}_{3}\right)_{2}(\mathrm{py})_{2}\right]$ (3), trans, cis-[Pt(bpy)(OAc) $\left.)_{2}\left(\mathrm{~N}_{3}\right)_{2}\right](\mathbf{4})$, trans, cis- $\left[\mathrm{Pt}(\mathrm{phen})(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}\right]$ (5) and trans, trans, trans$\left[\mathrm{Pt}(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{py})_{2}\right](6)$.

Parameter	Complex					
	1	2	3	4	5	6
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{Pt}$	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{8} \mathrm{Pt}$	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{8} \mathrm{Pt}$	$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Pt}$	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Pt}$	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Pt}$
Formula weight	435.32	459.34	437.33	553.42	577.43	555.42
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Triclinic
Space group	C2/c	C2/c	I121	Pben	$P 2 / \mathrm{n}$	$P-1$
$a(\AA)$	10.9346(5)	19.3584(7)	11.6121(5)	8.0488(4)	7.0303(1)	6.9480(3)
$b(\AA)$	15.3328(8)	10.1802(4)	3.8371(2)	14.1103(7)	11.7849(2)	8.2197(4)
$c(\AA)$	7.0453(4)	13.8692(4)	14.1714(9)	15.3280(7)	11.3271(2)	8.6473(4)
$\alpha\left({ }^{\circ}\right)$	90	90	90	90	90	92.136(3)
$\beta\left({ }^{\circ}\right)$	94.717(3)	113.816(2)	102.756(2)	90	101.236(1)	111.574(3)
$\gamma\left({ }^{\circ}\right)$	90	90	90	90	90	101.038(3)
Z	4	8	2	4	2	1
$\rho_{\text {calcd }}\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	2.456	2.440	2.358	2.112	2.083	2.060
$\mu_{\text {calcd }}\left(\mathrm{mm}^{-1}\right)$	11.919	11.230	11.392	8.101	7.665	7.877
Volume (\AA^{3})	1177.20(11)	2500.49(16)	615.85(6)	1740.82(15)	920.48(3)	447.61(4)
Conventional R	0.0192	0.0326	0.0264	0.0243	0.0305	0.0350
$w R 2$	0.0478	0.0825	0.0690	0.0582	0.0690	0.0913
Independent reflections	1453	3057	1429	2307	2454	2121
No. reflections measured	6926	9019	2838	21880	14648	5315
$R_{\text {int }}$	0.03	0.036	0.045	0.0377	0.027	0.041
Data/Restraints/Pa rameters	1452/0/87	3057/0/190	1423/13/71	2307/0/124	2453/20/142	2121/0/125

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes 4-6. The azide ligands are labelled $\mathrm{Pt}-\mathrm{N}_{\alpha}-\mathrm{N}_{\beta}-\mathrm{N}_{\gamma}$ and the pyridyl nitrogens as $\mathrm{N}_{\text {Ring }}$.

Bond / Angle	Complex		
	4	5	6
$\mathrm{Pt}-\mathrm{N}_{\text {(Ring) }}$	2.033(3)	2.052(4)	$2.028(6)$
$\mathrm{Pt}-\mathrm{O}$	2.020(2)	2.001(3)	2.007(5)
$\mathrm{Pt}-\mathrm{N}\left(\alpha_{1}\right)$	2.022(3)	2.032(4)	2.049(6)
$N\left(\alpha_{1}\right)-N\left(\beta_{1}\right)$	1.225(5)	1.175(6)	1.224(9)
$\mathrm{N}\left({ }_{\beta 1}\right)-\mathrm{N}\left(\gamma_{1}\right)$	1.147(5)	1.154(6)	1.142(10)
$\mathrm{Pt}-\mathrm{N}\left(\alpha_{1}\right)-\mathrm{N}\left(\beta_{1}\right)$	115.0(3)	118.5(4)	114.9(5)
$N\left(\alpha_{1}\right)-N\left(\beta_{1}\right)-N\left(\gamma_{1}\right)$	175.2(5)	173.1(5)	176.0(8)
$\mathrm{N}_{\text {(Ring) }}-\mathrm{Pt}-\mathrm{N}_{\text {(Ring) }}$	80.07(17)	81.2(2)	179.994
$\mathrm{O}-\mathrm{Pt}-\mathrm{O}$	179.18(14)	165.12(19)	179.994
$\mathrm{N}\left(\alpha_{1}\right)-\mathrm{Pt}-\mathrm{N}\left(\alpha_{2}\right)$	89.5(2)	96.1(2)	179.994
$\mathrm{N}_{(\text {Ring })}-\mathrm{Pt}-\mathrm{N}\left(\alpha_{1}\right)$	175.25(13)	172.40(16)	89.3(2)
$\mathrm{N}_{(\text {Ring })}-\mathrm{Pt}-\mathrm{N}\left(\alpha_{2}\right)$	95.22(14)	91.40(16)	90.7(2)
$\mathrm{N}_{\text {(Ring) }}-\mathrm{Pt}-\mathrm{O}$	93.82(11)	95.84(13)	95.6(2)
$\mathrm{N}_{(\text {Ring2) }}-\mathrm{Pt}-\mathrm{O}$	85.55(11)	95.44(14)	84.4(2)
$\mathrm{N}\left(\alpha_{1}\right)-\mathrm{Pt}-\mathrm{O}$	95.50(12)	83.17(16)	86.4(2)
$\mathrm{N}\left(\alpha_{2}\right)-\mathrm{Pt}-\mathrm{O}$	85.08(12)	86.90(16)	93.6(2)

Table 3. Experimental and calculated absorption properties of 4.

$\stackrel{\lambda_{\text {max }}, \mathbf{n m}}{\varepsilon\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right)}$	Tr ${ }^{\text {a }}$	Composition	Energy, eV (nm)	Oscillator Strength	Assignment
~350	6	$\begin{aligned} & \text { HOMO-2 } \rightarrow \text { LUMO+1 (62\%) } \\ & \text { HOMO- } \rightarrow \text { LUMO+1 (17\%) } \end{aligned}$	3.43 (361)	0.0105	LMCT
$\begin{gathered} 304(11402) \\ \text { and } \\ 315(9756) \end{gathered}$	16	$\begin{gathered} \text { HOMO-7 } \rightarrow \text { LUMO (17\%) } \\ \text { HOMO-6 } \rightarrow \text { L+1 (67\%) } \end{gathered}$	3.98 (312)	0.0127	LMCT
	18	$\begin{gathered} \hline \text { HOMO-7 } \rightarrow \text { LUMO+1 (47\%) } \\ \text { HOMO-6 } \rightarrow \text { LUMO (40\%) } \end{gathered}$	4.04 (307)	0.0161	LMCT
	19	$\begin{gathered} \text { HOMO-7 } \rightarrow \text { LUMO (11\%) } \\ \text { HOMO-4 } \rightarrow \text { LUMO+2 }(54 \%) \\ \text { HOMO- } 3 \rightarrow \text { LUMO+2 }(17 \%) \end{gathered}$	4.07 (304)	0.0525	LLCT
$\begin{gathered} 250 \\ (19102) \end{gathered}$	20	$\begin{gathered} \text { HOMO-9 } \rightarrow \text { LUMO (15\%) } \\ \text { HOMO- } 8 \rightarrow \text { LUMO (} 28 \% \text {) } \\ \text { HOMO-7 } \rightarrow \text { LUMO+1 (30\%) } \\ \text { HOMO-6 } \rightarrow \text { LUMO (} 16 \% \text {) } \end{gathered}$	4.31(287)	0.0969	LMCT
	21	$\begin{gathered} \text { HOMO-7 } \rightarrow \text { LUMO (37\%) } \\ \text { HOMO-6 } \rightarrow \text { LUMO+1 (10\%) } \\ \text { HOMO-5 } \rightarrow \text { LUMO+2 (35\%) } \end{gathered}$	4.32 (287)	0.0496	LMCT/LLCT
	22	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO+1 }(21 \%) \\ & \text { HOMO- } 8 \rightarrow \text { LUMO+1 }(25 \%) \\ & \text { HOMO-5 } \end{aligned} \text { LUMO+2 (} 22 \% \text {) }$	4.42 (280)	0.1933	LLCT/MLCT
	23	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO+1 }(22 \%) \\ & \text { HOMO- } 8 \rightarrow \text { LUMO+1 }(27 \%) \\ & \text { HOMO-5 } \end{aligned}$	4.44 (279)	0.1581	LLCT/MLCT
	25	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO (19\%) } \\ & \text { HOMO- } 8 \rightarrow \text { LUMO (65\%) } \end{aligned}$	4.48 (277)	0.0556	LLCT/MLCT
	26	HOMO \rightarrow LUMO+3 (91\%)	4.56 (272)	0.0314	LLCT
	28	HOMO-9 \rightarrow LUMO (57\%)	4.61 (268)	0.1447	LMCT
	29	HOMO \rightarrow LUMO+4 (83\%)	4.65 (267)	0.047	LLCT
	30	$\begin{aligned} & \text { HOMO-2 } \rightarrow \text { LUMO+3 (80\%) } \\ & \text { HOMO- } \rightarrow \text { LUMO+3 (14\%) } \end{aligned}$	4.76 (260)	0.0119	LLCT

[^0]Table 4. Experimental and calculated absorption properties of 5.

$\begin{gathered} \lambda_{\max }, \mathbf{n m} \\ \varepsilon\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right) \end{gathered}$	Tr ${ }^{\text {a }}$	Composition	Energy, eV (nm)	Oscillator Strength	Assignment
$337 \text { (1060) }$ and $352 \text { (796) }$	6	$\begin{aligned} & \text { HOMO }-3 \rightarrow \text { LUMO }+1(10 \%) \\ & \text { HOMO- } 2 \rightarrow \text { LUMO }+1(35 \%) \\ & \text { HOMO }-1 \rightarrow \text { LUMO }+1(43 \%) \end{aligned}$	3.38 (367)	0.0103	LMCT
$\begin{gathered} 300 \\ (5840) \end{gathered}$	16	$\begin{gathered} \text { HOMO-2 } \rightarrow \text { LUMO }+2(55 \%) \\ \text { HOMO- } \rightarrow \text { LUMO }+2(15 \%) \\ \text { HOMO } \rightarrow \text { LUMO }+3(20 \%) \end{gathered}$	3.89 (318)	0.0249	LLCT
	17	$\begin{aligned} & \text { HOMO-2 } \rightarrow \text { LUMO +3 }(18 \%) \\ & \text { HOMO- }-1 \rightarrow \text { LUMO }+3(76 \%) \end{aligned}$	3.90 (317)	0.0125	LLCT
	19	$\begin{aligned} & \text { HOMO }-3 \rightarrow \text { LUMO }+2(70 \%) \\ & \text { HOMO- }-2 \rightarrow \text { LUMO }+2(11 \%) \end{aligned}$	3.96 (313)	0.0288	LLCT/IL
$\begin{gathered} 272 \\ (17900) \end{gathered}$	27	$\begin{aligned} & \text { HOMO-6 } \rightarrow \text { LUMO +2 (20\%) } \\ & \text { HOMO- } 3 \rightarrow \text { LUMO +3 }(52 \%) \end{aligned}$	4.27 (290)	0.0131	LLCT
	28	$\begin{gathered} \text { HOMO-10 } \rightarrow \text { LUMO (} 23 \% \text {) } \\ \text { HOMO-9 } \rightarrow \text { LUMO (} 24 \% \text {) } \\ \text { HOMO- } 8 \rightarrow \text { LUMO }+1(26 \%) \\ \text { HOMO- } 7 \rightarrow \text { LUMO }(14 \%) \end{gathered}$	4.28 (290)	0.1048	LMCT
	29	$\begin{gathered} \text { HOMO-8 } \rightarrow \text { LUMO }(29 \%) \\ \text { HOMO }-7 \rightarrow \text { LUMO }+1(16 \%) \\ \text { HOMO- } 6 \rightarrow \text { LUMO }+2(19 \%) \end{gathered}$	4.33 (287)	0.1087	LMCT/d-d
	30	$\begin{gathered} \text { HOMO-9 } \rightarrow \text { LUMO (51\%) } \\ \text { HOMO-5 } \rightarrow \text { LUMO }+3 \text { (34\%) } \end{gathered}$	4.40 (282)	0.1474	Mixed
	31	$\begin{gathered} \text { HOMO-10 } \rightarrow \text { L+1 (34\%) } \\ \text { HOMO- } 9 \rightarrow \text { LUMO }+1(50 \%) \end{gathered}$	4.42 (281)	0.0225	LMCT
	32	$\begin{gathered} \text { HOMO-10 } \rightarrow \text { LUMO (} 24 \% \text {) } \\ \text { HOMO-9 } \rightarrow \text { LUMO (} 22 \% \text {) } \\ \text { HOMO-5 } \rightarrow \text { LUMO }+3(39 \%) \end{gathered}$	4.45 (279)	0.0242	Mixed

[^1]Table 5. Experimental and calculated absorption properties of 6 .

$\begin{gathered} \lambda_{\max }, \mathbf{n m} \\ \varepsilon\left(\mathbf{M}^{-1} \mathbf{c m}^{-1}\right) \end{gathered}$	Tr ${ }^{\text {a }}$	Composition	Energy, eV (nm)	Oscillator Strength	Assignment
$\begin{gathered} 307 \\ (16900) \end{gathered}$	9	$\begin{gathered} \text { HOMO-4 } \rightarrow \text { LUMO (11\%) } \\ \text { HOMO-4 } \rightarrow \text { LUMO+1 (65\%) } \\ \text { HOMO-2 } \rightarrow \text { LUMO+1 }(20 \%) \end{gathered}$	3.75 (330)	0.0424	LMCT
	10	$\begin{aligned} & \text { HOMO-4 } \rightarrow \text { LUMO+1 }(18 \%) \\ & \text { HOMO- } 2 \rightarrow \text { LUMO+1 }(76 \%) \end{aligned}$	3.79 (327)	0.0116	LMCT
	12	$\begin{aligned} & \text { HOMO-6 } \rightarrow \text { LUMO (64\%) } \\ & \text { HOMO-4 } \rightarrow \text { LUMO (16\%) } \end{aligned}$	4.01 (309)	0.1278	LMCT
	13	$\begin{gathered} \text { HOMO-6 } \rightarrow \text { LUMO (} 28 \% \text {) } \\ \text { HOMO-4 } \rightarrow \text { LUMO (40\%) } \\ \text { HOMO-4 } \rightarrow \text { LUMO+1 }(10 \%) \end{gathered}$	4.06 (305)	0.3458	LMCT
$\begin{gathered} 259 \\ (12500) \end{gathered}$	19	$\begin{gathered} \text { HOMO-10 } \rightarrow \text { LUMO (} 72 \% \text {) } \\ \text { HOMO-6 } \rightarrow \text { LUMO+1 }(16 \%) \end{gathered}$	4.46 (277)	0.0208	LMCT
	21	$\begin{gathered} \text { HOMO-10 } \rightarrow \text { LUMO (12\%) } \\ \text { HOMO-6 } \rightarrow \text { LUMO+1 (72\%) } \end{gathered}$	4.51 (275)	0.011	LMCT
	25	$\begin{gathered} \text { HOMO-3 } \rightarrow \text { LUMO+2 (75\%) } \\ \text { HOMO-2 } \rightarrow \text { LUMO+3 (10\%) } \end{gathered}$	4.67 (265)	0.0357	LLCT
	29	HOMO-1 \rightarrow LUMO+3 (87\%)	4.82 (257)	0.0155	LLCT

${ }^{\mathrm{a}} \mathrm{Tr}=$ transition number as obtained in the TDDFT calculation output.

Table 6. Calculated low-energy absorption properties of 4-6.

Tr ${ }^{\text {a }}$	Composition	Energy, eV (nm)	Oscillator Strength
4			
1	HOMO \rightarrow LUMO (91\%)	2.60 (477)	0.0007
2	$\begin{aligned} & \text { HOMO-1 } \rightarrow \text { LUMO (} 25 \% \text {), } \\ & \text { HOMO } \rightarrow \text { LUMO+1 }(66 \%) \end{aligned}$	2.80 (442)	0.0001
3	$\begin{aligned} & \hline \text { HOMO-1 } \rightarrow \text { LUMO (62\%) } \\ & \text { HOMO } \rightarrow \text { LUMO +1 (} 28 \% \text {) } \end{aligned}$	3.10 (400)	0.0027
4	$\begin{aligned} & \hline \text { HOMO-2 } \rightarrow \text { LUMO+1 (17\%), } \\ & \text { HOMO-1 } \rightarrow \text { LUMO+1 (76\%) } \end{aligned}$	3.25 (381)	0.0019
5			
1	HOMO \rightarrow LUMO (91\%)	2.55 (485)	0.0006
2	HOMO-2 \rightarrow LUMO (17\%), HOMO $-1 \rightarrow$ LUMO (-12\%), HOMO \rightarrow LUMO +1 (64%)	2.77 (447)	0.0001
3	HOMO-2 \rightarrow LUMO (-29%), HOMO- $1 \rightarrow$ LUMO (36%), HOMO \rightarrow LUMO +1 (30%)	3.06 (405)	0.0032
4	$\begin{aligned} & \hline \text { HOMO- } 2 \rightarrow \text { LUMO+1 (} 49 \%), \\ & \text { HOMO- } 1 \rightarrow \text { LUMO+1 }(-44 \%) \end{aligned}$	3.22 (384)	0.0032
6			
1	HOMO \rightarrow LUMO (93\%)	2.38 (520)	0.0
2	HOMO-2 \rightarrow LUMO (-10\%), HOMO-1 \rightarrow LUMO (85%)	2.91 (427)	0.0021
3	HOMO \rightarrow LUMO+1 (96\%)	3.09 (401)	0.0
4	$\begin{aligned} & \text { HOMO-5 } \rightarrow \text { LUMO (} 45 \% \text {), } \\ & \text { HOMO-3 } \rightarrow \text { LUMO (}-41 \% \text {) } \end{aligned}$	3.27 (379)	0.0
5	HOMO-2 \rightarrow LUMO (82%), HOMO-1 \rightarrow LUMO (10%)	3.29 (377)	0.0068

${ }^{\mathrm{a}} \mathrm{Tr}=$ transition number as obtained in the TDDFT calculation output.

Figure Captions

1

4

2

5

3

6

Figure 1. Structures of $\left[\operatorname{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}\right](\mathbf{1}),\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}\right]$ (2), trans $-\left[\operatorname{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{py})_{2}\right]$ (3), trans, cis$\left[\mathrm{Pt}(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{bpy})\right] \quad$ (4), trans, cis-[$\left.\mathrm{Pt}(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{phen})\right] \quad$ (5) and trans, trans, trans$\left[\mathrm{Pt}(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{py})_{2}\right]$ (6).

Figure 2. ORTEP plots of cis, trans $-\left[\operatorname{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}\right]$ (4), cis, trans $-\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}\right]$ (5) and (6) trans, trans, trans $-\left[\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}(\mathrm{py})_{2}\right]$ (6). Non-hydrogen atoms are represented by Gaussian ellipsoids at the 50% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.

Figure 3. Selected orbitals for complexes $\left[\operatorname{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}\right](\mathbf{1})$ and $\left[\mathrm{Pt}(\mathrm{OAc})_{2}\left(\mathrm{~N}_{3}\right)_{2}(\mathrm{bpy})\right]$ (4).

Figure 4. Calculated (blue line) and experimental (black line) absorption spectra of 4-6 in $\mathrm{H}_{2} \mathrm{O}$. The excited states are shown as vertical bars with heights equal to the extinction coefficients. EDDMs of selected singlet transitions, are reported on the right (electron density migrates from light pink areas to purple ones). Theoretical curves and EDDMs were obtained using the program GaussSum 1.05. ${ }^{68}$

Figure 5. UV-visible spectra of cis, trans- $\left[\operatorname{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}\right](4)$, cis, trans-[$\operatorname{Pt}($ phen $\left.)\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}\right]$ (5) and trans, trans, trans-[$\left.\mathrm{Pt}\left(\mathrm{N}_{3}\right)_{2}(\mathrm{OH})_{2}(\mathrm{py})_{2}\right](6)$ after UVA irradiation for $0(-), 1(-), 5(-), 15$ $(-), 30(-), 60(-)$ and $120(-)$ min. The arrows denote an increase or decrease of absorbance with increasing irradiation time.

Figure 6. ${ }^{1} \mathrm{H}$ NMR spectra showing loss of bound acetate on irradiation for complexes 4-6. The appearance of free acetate was confirmed by spiking with acetic acid; the very slight change in chemical shift of the free acetate is due to variation in the pH of the solutions.

Figure 7. Electrostatic potential (ESP) surface of complex 2 and 5. ESP surfaces are shown both in space (with positive and negative regions shown in blue and red, respectively) and mapped on electron densities (isovalue $=0.004$) of the molecule $\left(\right.$ ESP colour scale is such that $\delta^{+} \rightarrow \delta^{-}$in the direction blue \rightarrow green \rightarrow yellow \rightarrow orange \rightarrow red).

Synthesis, characterisation and photochemistry of $\mathbf{P t}^{\text {IV }}$ pyridyl azido complexes

Fiona S. Mackay ${ }^{\text {a }}$, Nicola J. Farrer ${ }^{\text {b }}$, Luca Salassa ${ }^{\text {b }}$, Hui-Chung Tai ${ }^{\text {b }}$, Robert J. Deeth ${ }^{\text {b }}$, Stephen A. Moggach ${ }^{\text {a }}$, Peter A. Wood ${ }^{\text {a }}$, Simon Parsons ${ }^{\text {a }}$, Peter J. Sadler* ${ }^{\text {b }}$
${ }^{a}$ School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
${ }^{b}$ Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
Email: p.j.sadler@warwick.ac.uk.

Supplementary Information

Tables S1 - S11
Figures S1 - S10
1

3

Figure S1. ORTEP plots of $\left[\operatorname{Pt}(\mathrm{bpy})\left(\mathrm{N}_{3}\right)_{2}\right](\mathbf{1})$ and $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}\right](\mathbf{2})$. $\operatorname{PLATON}^{1}$ was used to generate the plot for $\left[\operatorname{Pt}(\mathrm{py})_{2}\left(\mathrm{~N}_{3}\right)_{2}\right]$ (3). Non-hydrogen atoms are represented by Gaussian ellipsoids at the 50% probability level. Hydrogen atoms are shown with arbitrarily small thermal parameters.

[^2]Table S1. Selected X-ray bond distances (\AA). For all complexes except $\mathbf{2} ; \mathrm{N} 1=\mathrm{N} 2$ $=\mathrm{N}_{\text {ring }} ; \mathrm{N}_{(\alpha 1)}=\mathrm{N}_{(\alpha 2)}, \mathrm{N}_{(\beta 1)}=\mathrm{N}_{(\beta 2)}, \mathrm{N}_{(\gamma 1)}=\mathrm{N}_{(\gamma 2)}$. O 1 and O 2 are the axially-coordinated oxygens.

Bond	Complex					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{Pt}-\mathrm{N} 1$	2.009	2.011	1.992^{*}	$2.033(3)$	2.051	2.028
$\mathrm{Pt}-\mathrm{N} 2$	2.009	2.012	1.992^{*}	$2.033(3)$	2.051	2.028
$\mathrm{Pt}-\mathrm{N}_{(\alpha 1)}$	2.034	2.037	2.036	$2.022(3)$	2.033	2.049
$\mathrm{Pt}-\mathrm{N}_{(\alpha 2)}$	2.034	2.022	2.036	$2.022(3)$	2.033	2.049
$\mathrm{~N}_{(\alpha 1)}-\mathrm{N}_{(\beta 1)}$	1.191	1.182	1.188	1.225	1.174	1.224
$\mathrm{~N}_{(\beta 1)}-\mathrm{N}_{(\gamma 1)}$	1.148	1.164	1.520	1.148	1.155	1.142
$\mathrm{~N}_{(\alpha 2)}-\mathrm{N}_{(\beta 2)}$	1.191	1.179	1.188	1.225	1.174	1.224
$\mathrm{~N}_{(\beta 2)}-\mathrm{N}_{(\mathrm{y2})}$	1.148	1.167	1.520	1.148	1.155	1.142
$\mathrm{Pt}-\mathrm{O} 1$	-	-	-	2.020	2.001	2.007
$\mathrm{Pt}-\mathrm{O} 2$	-	-	-	2.020	2.001	2.007

* disordered bond

Table S2. Selected X-ray angles $\left({ }^{\circ}\right)$

Angle	Complex					
	1	2	3	4	5	6
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{N} 2$	80.40(17)	81.6(2)	165.84*	80.07(17)	81.2(2)	179.994
$\mathrm{N}_{(\alpha 1)}-\mathrm{Pt}-\mathrm{N}_{(\alpha 2)}$	91.29(18)	95.0(2)	146.7(7)	89.5(2)	96.1(2)	179.994
$\mathrm{Pt}-\mathrm{N}_{(\alpha 1)}-\mathrm{N}_{(\beta 1)}-\mathrm{N}_{(\gamma 1)}{ }^{\dagger}$	176.81	179.65	-106.70	167.93	167.93	179.80
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{N}_{(\alpha 1)}-\mathrm{N}_{(\beta 1)}{ }^{\dagger}$	-125.45	-164.38	-167.97*	142.39	155.71	123.42
$\mathrm{N} 2-\mathrm{Pt}-\mathrm{N}_{(\alpha 2)}-\mathrm{N}_{(\beta 2)}{ }^{\dagger}$	-125.45	-175.37	-167.97*	142.39	155.71	123.42
$\mathrm{Pt}-\mathrm{N}_{(\alpha 2)}-\mathrm{N}_{(\beta 2)}-\mathrm{N}_{(\gamma 2)}{ }^{\dagger}$	176.81	179.50	-106.70	167.93	167.93	179.80
$\mathrm{O} 1-\mathrm{Pt}-\mathrm{O} 2$	-	-	-	179.18(14)	165.12(19)	179.994

*Disordered bonds involved
${ }^{\dagger}$ Torsion angle
4: $\mathrm{N}-\mathrm{Pt}-\mathrm{N}(\mathrm{bpy})=80.07^{\circ}$
(Ac)CO \cdots H-C contact $2.794 \AA$
5: $\mathrm{N}-\mathrm{Pt}-\mathrm{N}($ phen $)=81.19^{\circ}$

Description of crystal packing in 1.

The two aromatic rings within a single molecule of the bpy complex $\mathbf{1}$ are skewed with respect to each other, at an angle of 5.12°. The centroid-centroid distance (4.036 \AA) and angle $\left(5.12^{\circ}\right)$ indicate that $\pi-\pi$ stacking does not play a major role in the crystal packing of 1. The structure of $\left[\operatorname{Pt}(\mathrm{phen})\left(\mathrm{N}_{3}\right)_{2}\right]$ (2) consists of dimers which are $\pi-\pi$ stacked at a distance of $3.631 \AA$ with a dihedral angle of 5.27°. The Pt \cdots Pt distance is $3.341 \AA$; it is not unusual to find such $\mathrm{Pt} \cdots \mathrm{Pt}$ interactions in square-planar $\mathrm{Pt}^{\mathrm{II}}$ complexes, with linear chains being commonly reported. ${ }^{1,2}$ The Pt...Pt distance is however considerably longer than that which is found in complexes with well-defined $\mathrm{Pt}-\mathrm{Pt}$ bonds. ${ }^{3}$

Table S3. Selected DFT bond distances ((\AA)

Bond	$\mathbf{7}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{Pt}-\mathrm{N} 1$	2.064	2.074	2.063	2.105	2.118	2.076
$\mathrm{Pt}-\mathrm{N} 2$	2.064	2.074	2.063	2.105	2.118	2.076
$\mathrm{Pt}-\mathrm{N} \alpha 1$	2.022	2.020	2.081	2.058	2.055	2.111
$\mathrm{Pt}-\mathrm{N} \alpha 2$	2.022	2.020	2.081	2.058	2.055	2.111
$\mathrm{~N} \alpha-\mathrm{N} \beta 1$	1.223	1.223	1.223	1.230	1.230	1.226
$\mathrm{~N} \beta 1-\mathrm{N} \gamma 1$	1.151	1.151	1.154	1.147	1.147	1.150
$\mathrm{~N} \alpha 2-\mathrm{N} \beta 2$	1.223	1.223	1.223	1.230	1.230	1.226
$\mathrm{~N} \beta 2-\mathrm{N} \gamma 2$	1.151	1.151	1.155	1.147	1.147	1.150
$\mathrm{Pt}-\mathrm{O} 1$	-	-	-	2.058	2.059	2.061
$\mathrm{Pt}-\mathrm{O} 2$	-	-	-	2.058	2.059	2.061

Table S4. Selected DFT angles (${ }^{\circ}$)

Angle	Complex					
		$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathrm{N} 1-\mathrm{Pt}-\mathrm{N} 2$	79.17	79.97	177.98	78.60	79.06	180
$\mathrm{~N} \alpha 1-\mathrm{Pt}-\mathrm{N} \alpha 2$	99.28	100.78	177.41	93.31	94.05	180
$\mathrm{Pt}-\mathrm{N} \alpha 1-\mathrm{N} \beta 1-\mathrm{N} \gamma 1$	176.16	176.76	173.44	178.32	179.16	169.97
$\mathrm{Pt}-\mathrm{N} \alpha 2-\mathrm{N} \beta 2-\mathrm{N} \gamma 2$	176.16	177.57	173.50	-178.32	-179.16	-169.97
$\mathrm{~N} 1-\mathrm{Pt}-\mathrm{N} \alpha 1-\mathrm{N} \beta 1$	-162.16	-166.64	-141.51	133.43	136.12	-77.09
$\mathrm{~N} 2-\mathrm{Pt}-\mathrm{N} \alpha 2-\mathrm{N} \beta 2$	-162.16	-166.64	-141.48	133.43	136.25	77.09
$\mathrm{O} 1-\mathrm{Pt}-\mathrm{O} 2$	-	-	-	168.08	167.19	180

Figure S2. ESI-MS of compound $\mathbf{6}$ following UVA irradiation for 2 h showing species in which the py ligand is still attached but from which the acetate group has dissociated.

Calculations with Gaussian

Figure S3: Theoretical UV-vis spectrum of 1

Table S8: Complex 1, selected singlet transitions

No.	Energy (eV)	$\lambda(\mathbf{n m})$	Osc. Strength	Major contribs
1	2.5767	481.18	0.0056	HOMO->LUMO (96\%)
2	2.9652	418.13	0.1189	H-1->LUMO (92\%)
3	3.019	410.69	0.0002	$\begin{aligned} & \text { H-2->LUMO (14\%), } \\ & \text { HOMO->L+2 (73\%) } \\ & \text { HOMO->L+1 (-5\%) } \end{aligned}$
4	3.0662	404.36	0.0026	$\begin{aligned} & \text { H-2->LUMO (83\%), } \\ & \text { HOMO->L+2 }(-12 \%) \end{aligned}$
9	3.8372	323.11	0.0288	$\begin{aligned} & \mathrm{H}-1->\mathrm{L}+1(16 \%), \\ & \text { HOMO->L+3 (79\%) } \end{aligned}$
10	3.8951	318.31	0.0036	H-4->LUMO (93\%)
11	4.0002	309.94	0.0594	$\begin{aligned} & \text { H-1->L+1 (70\%), } \\ & \text { HOMO->L+3 (-17\%) } \end{aligned}$
16	4.3527	284.85	0.487	$\begin{aligned} & \text { H-5->LUMO (62\%), } \\ & \text { H-1->L+3 (-18\%) } \end{aligned}$
17	4.5666	271.5	0.0202	H-6->LUMO (92\%)
18	4.5934	269.92	0.0152	HOMO->L+6 (73\%)
19	4.6943	264.12	0.1168	$\begin{aligned} & \text { H-7->LUMO (71\%), } \\ & \text { H-4->L+2 (14\%) } \end{aligned}$
20	4.8264	256.89	0.0107	$\begin{aligned} & \text { H-6->L+2 (11\%), } \\ & \text { H-3->L+1 (-31\%), } \\ & \text { H-1->L+6 (32\%) } \end{aligned}$
21	4.8585	255.19	0.0691	$\begin{aligned} & \text { H-7->LUMO (-16\%), } \\ & \text { H-4->L+2 (41\%), } \\ & \text { H-1->L+5 (-16\%) } \end{aligned}$
31	5.2475	236.27	0.0571	$\begin{aligned} & \mathrm{H}-5->\mathrm{L}+1(55 \%), \\ & \mathrm{H}-1->\mathrm{L}+4(-15 \%) \end{aligned}$
32	5.2757	235.01	0523	$\begin{aligned} & \mathrm{H}-6->\mathrm{L}+2(47 \%), \\ & \mathrm{H}-1->\mathrm{L}+6(-16 \%) \end{aligned}$

Figure S4: Theoretical UV-vis spectrum of 2

Table S9: Complex 2, selected singlet transitions

No.	Energy (eV)	$\lambda(\mathrm{nm})$	Osc. Strength	Major contribs
1	2.6043	476.08	0.005	HOMO->LUMO (96\%)
2	2.8917	428.77	0.0104	$\begin{aligned} & \text { H-1->LUMO (-36\%), } \\ & \text { HOMO->L+1 (63\%) } \end{aligned}$
3	2.9879	414.95	0.0	HOMO->L+2 (90\%)
4	3.091	401.12	0.1793	$\begin{aligned} & \text { H-1->LUMO (57\%), } \\ & \text { HOMO->L+1 (35\%) } \end{aligned}$
5	3.1146	398.07	0.0029	H-2->LUMO (95\%)
6	3.238	382.91	0.0346	H-1->L+1 (94\%)
18	4.4342	279.61	0.0547	H-1->L+3 (86\%)
20	4.5631	271.71	0.2794	$\begin{aligned} & \text { H-7->LUMO (}-31 \% \text {), } \\ & \text { H-6->LUMO (33\%), } \\ & \text { H-5->L+1 (13\%) } \end{aligned}$
21	4.6426	267.06	0.1963	H-6->L+1 (61\%)
23	4.7911	258.78	0.0583	$\begin{aligned} & \text { H-8->LUMO (38\%), } \\ & \text { H-4->L+2 (30\%) } \end{aligned}$
24	4.8089	257.82	0.0712	$\begin{aligned} & \mathrm{H}-7->\mathrm{L}+2(-11 \%), \\ & \mathrm{H}-1->\mathrm{L}+6(51 \%) \end{aligned}$
25	4.8321	256.58	0.3062	$\begin{aligned} & \text { H-7->LUMO (53\%), } \\ & \text { H-1->L+6 (10\%) } \end{aligned}$
26	4.8943	253.32	0.0108	$\begin{aligned} & \text { H-8->LUMO (34\%), } \\ & \text { H-4->L+2 (-25\%), } \\ & \text { HOMO->L+4 (19\%) } \end{aligned}$
28	4.9633	249.8	0.0734	$\begin{aligned} & \text { H-5->L+2 (-22\%), } \\ & \text { HOMO->L+4 (59\%) } \end{aligned}$

Figure S5: Theoretical UV-vis spectrum of 3

Table S10: Complex 3, selected singlet transitions

No.	Energy (eV)	$\lambda(\mathbf{n m})$ Osc. Strength	
1	3.1223	397.09	0.0099 A
2	3.1654	391.68	0.0001
3	3.5748	346.83	0.0021
4	3.5777	346.55	0.0043
5	3.7121	334.0	0.0005
7	3.8848	319.15	0.026
11	4.3356	285.97	0.129
13	4.4197	280.52	0.0248
18	4.7005	263.77	0.2771
21	5.0252	246.73	0.0424
23	5.0422	245.89	0.0614
26	5.2676	235.37	0.02
29	5.3281	232.7	0.1156
31	5.4011	229.55	0.0156
32	5.4121	229.09	0.0011

Major contribs

HOMO->LUMO (43\%), HOMO->L+1 (46\%)

H-1->LUMO (40\%), H-1->L+1 (53\%)

H-2->LUMO (37\%), H-2->L+1 (50\%)

HOMO->LUMO (53\%), HOMO->L+1 (-45\%)

HOMO->L+2 (87\%)
H-1->L+2 (98\%)
H-3->LUMO (25\%), H-3->L+1 (43\%)
H-3->LUMO (50\%), H-3->L+1 (-16\%), HOMO->L+3 (31\%)
H-4->LUMO (54\%), H-4->L+1 (-38\%)
H-2->L+4 (96\%)
H-8->LUMO (25\%), H-8->L+1 (27\%) H-6->L+2 (-10\%), H-5->LUMO (-18\%), H-4->L+3 (51\%), HOMO->L+5 (68\%) H-5->LUMO (35\%), H-5->L+1 (52\%) H-7->LUMO (33\%), H-6->L+1 (26\%), H-1->L+5 (17\%), HOMO->L+6 (-11\%)

Figure S6: Orbital Energy Diagram for complexes 1-6.

ADF Calculations

Table S11. Experimental and calculated absorption properties of 4

$\begin{gathered} \lambda_{\max }, \mathbf{n m} \\ \varepsilon\left(\mathbf{M}^{-1}\right. \\ \left.\mathbf{c m}^{-1}\right) \end{gathered}$	Tr ${ }^{\text {a }}$	Composition	Energy, eV (nm)	Oscillator Strength	Assignment
~ 350	25	$\begin{gathered} \text { HOMO-9 } \rightarrow \text { LUMO (91\%) } \\ \text { HOMO-4 } \rightarrow \text { LUMO+2 }(6 \%) \end{gathered}$	3.48(361)	0.0052	LLCT/LMCT
$\begin{gathered} 304 \\ (11402) \\ \text { and } \\ 315 \\ (9756) \end{gathered}$	35	$\begin{aligned} & \text { HOMO-8 } \rightarrow \text { LUMO (} 41 \% \text {) } \\ & \text { HOMO- } 7 \rightarrow \text { LUMO (17\%) } \\ & \text { HOMO- } 10 \rightarrow \text { LUMO (} 15 \% \text {) } \end{aligned}$	3.92 (316)	0.0746	LLCT/MLCT
	40	$\begin{gathered} \text { HOMO-10 } \rightarrow \text { LUMO (38\%) } \\ \text { HOMO-8 } \rightarrow \text { LUMO+1 (25\%) } \\ \text { HOMO- } 7 \rightarrow \text { LUMO }+1 \\ (25 \%) \end{gathered}$	4.10 (303)	0.0170	$\begin{gathered} \text { MLCT/LMCT } \\ / L L C T \end{gathered}$
	41	$\begin{gathered} \text { HOMO-8 } \rightarrow \text { LUMO+1 (64\%) } \\ \text { HOMO-10 } \rightarrow \text { LUMO } \\ (20 \%) \end{gathered}$	4.12 (301)	0.0266	$\begin{gathered} \text { MLCT/LMCT } \\ / L L C T \end{gathered}$
	42	$\begin{aligned} & \text { HOMO-9 } \rightarrow \text { LUMO+1 (58\%) } \\ & \text { HOMO-8 } \rightarrow \text { LUMO+2 (23\%) } \end{aligned}$	4.17(297)	0.0165	LMCT/LLCT
$\begin{gathered} 250 \\ (19102) \end{gathered}$	43	HOMO-1 \rightarrow LUMO+5 (99\%)	4.18(297)	0.0020	LLCT
	44		4.32 (297)	0.0025	LMCT/LLCT
	45	HOMO-4 \rightarrow LUMO+1 (35\%) HOMO-7 \rightarrow LUMO+1 (14\%) HOMO-6 \rightarrow LUMO+2 (13\%)	4.22 (294)	0.1730	LLCT/LMCT
	46	HOMO-7 \rightarrow LUMO+3 (69\%) HOMO-8 \rightarrow LUMO+3 (31\%)	4.24 (292)	0.0014	LLCT
	47	HOMO-9 \rightarrow LUMO+3 (97\%)	4.35 (285)	0.0027	LLCT
	48	$\begin{aligned} & \text { HOMO-7 } \rightarrow \text { LUMO+4 (46\%) } \\ & \text { HOMO-8 } \rightarrow \text { LUMO+4 (16\%) } \\ & \text { HOMO-5 } \rightarrow \text { LUMO+1 (12\%) } \end{aligned}$	4.39 (282)	0.0979	LLCT/LMCT
	49	HOMO-7 \rightarrow LUMO+4 (25\%)	4.40 (282)	0.1697	LLCT/LMCT/
HOMO-5 \rightarrow LUMO+1 (20\%)					MLCT/

		HOMO-6 \rightarrow LUMO+1 (13\%) HOMO-8 \rightarrow LUMO+4 (13\%)			MMCT
	50	HOMO-9 \rightarrow LUMO+4 (94\%)	4.51 (275)	0.0098	LLCT

${ }^{\mathrm{a}} \mathrm{Tr}=$ transition number as obtained in the TDDFT calculation output.

Figure S7: Complex 4, LUMO

Figure S8: Complex 4, LUMO+1

Figure S9: Complex 4, LUMO+2

Figure S10: Complex 4, HOMO

(1) W. B. Connick, L. M. Henling, R. E. Marsh and H. B. Gray, Inorg. Chem., 1996, 35, 6261-6265.
(2) V. M. Miskowski and V. H. Houlding, Inorg. Chem., 1989, 28, 1529-1533 and references therein.
(3) R. J. Blau, and J. H. Espenson, Inorg. Chem., 1986, 25, 878-880.

[^0]: ${ }^{\mathrm{a}} \mathrm{Tr}=$ transition number as obtained in the TDDFT calculation output.

[^1]: ${ }^{\mathrm{a}} \mathrm{Tr}=$ transition number as obtained in the TDDFT calculation output.

[^2]: ${ }^{1}$ A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13.

