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In the present work, acid dissociation constant (pKa) values of muscimol derivatives were calculated using 
the Density Functional Theory (DFT) method. In this regard, free energy values of neutral, protonated 
and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d) basis sets. The 
hydrogen bond formation of all species had been analyzed using the Tomasi’s method. It was revealed 
that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa 
values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible 
spectrophotometric measurements.

Uniterms: Nanodrug. Muscimol. Acid/dissociation constants. Computational chemistry. Density 
Functional Theory.

No presente trabalho, calculou-se a constante de dissociação do ácido (pKa) dos derivados de muscimol, 
utilizando-se o método da teoria do funcional de densidade (DFT). Com esse objetivo, calcularam-se os 
valores das espécies neutra, protonada e desprotonada do muscimol em água em base B3LYP/6-31G(d). 
A formação da ligação de hidrogênio de todas as espécies foi analisada utilizando o método de Tomasi. 
Demonstrou-se que os valores de pKa calculados teoricamente estavam em boa concordância com os 
valores experimentais disponíveis, determinados por eletroforese capilar, titulação potenciométrica e 
medidas por espectrofotometria UV-visível.

Unitermos: Nanofármaco. Muscimol. Ácido/constantes de dissociação. Química computacional. Teoria 
do funcional de densidade.

INTRODUCTION

Muscimol ([methylene-3H(n)]-3-hydroxy-5-
aminoethyl isoxazole) is a strong GABAA agonist 
found naturally in the mushroom (Amanita muscaria). 
Muscimol is slowly removed by the uptake mechanism, 
making it more suitable for long-term quantitative 
studies. Antiepileptic effects were found with epidural 
pentobarbital and GABA administrations. The antiepileptic 
effects of subarachnoid lidocaine were shown in epilepsy 
patients undergoing tissue resection (Michelot, Melendez-
Howell, 2003; Steardo et al., 1985; Frolund et al., 2002; 
Chilton, Ott, 1976).

The tendency of a molecule to lose hydarogen atom 

as an acidic proton is quantified as pKa. It is well-known 
that pKa values are important for the development of new 
compounds with biological activity. It can be due to the 
relationships between the pKa values and those structures, 
which may help studies in drugs design and also explain 
the biopharmaceutical properties of substances (Duran, 
Aydemir, 2012; Barbosa et al., 2001). There are several 
experimental methods for determining the acidity constants 
in aqueous solutions for example, conductometry, 
spectrophotometric, capillary electrophoresis, calorimetric 
adsorption, potentiometric titration, HPLC, solubility, 
partition and distribution (Reijenga et al., 2013; Heinze, 
1984; Thurlkill et al., 2005; Santos et al., 2010).

In addition to experimental methods, theoretical 
prediction of the pKa values has received considerable 
attention and many studies have been carried out on this 
topic in recent years (Kelly, Cramer, Truhlar, 2006; Ho, 
Coote, 2010).
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The DFT methods provide reliable pKa values, 
which help us to better understanding of different effective 
factors on solvent-solute interactions. This understanding 
can be essential for interpretation of experimental values 
in various systems (Topol et al., 2000; Ho, Coote, 2010).

As the pKa equals to ∆G/2.303RT (where ∆G is a 
free energy change of the dissociation reaction either in a 
gas or solution) acidity of a compound can be determined 
by its ∆G value (Tosso et al., 2009).

In summary, the aim of this study was to calculate 
pKa values of muscimol using the DFT method and the 
results were compared with those of existed experimental 
values. At first, all structures were optimized using the 
B3LYP/6-31G(d) level of theory. The solvent effect 
was simulated using integral equation formalism of the 
polarizable continuum model (IEF-PCM). Also explicit 
solvent were used in our calculation to study hydrogen 
bond formation. Table II shows that there is a good 
agreement between experimental and calculated pKa 
values by considering their RD.

COMPUTATIONAL METHODS

All calculations about properties of muscimol 
molecule (Figure 1) were carried out, on a Pentium 4 
computer, using the Gaussian_09 version (Frisch et al., 
2009). The DFT-B3LYP/6-31G(d)/SMD method were 
applied on all structures.

To evaluate the conformational behaviour of these 
systems in solvent-solution phase, calculations were 
performed using the solvation model density (SMD) a 
method of implicit solvation model (Marenich, Cramer, 
Truhlar, 2009). The SMD uses the integral equation 
formalism of the polarizable continuum model (IEF-PCM) 
(Scalmani, Frisch, 2010; Cossi et al., 1998; Mennucci, 
Cances, Tomasi, 1997; Ribeiro et al., 2010) with a 
parameterized set of atomic radii, to calculate the bulk 
electrostatic energy contribution.

The model calculates short-range interaction 
energies between solvent and solute using a modified 
solvent-accessible surface area which incorporates 

parameters for atomic and molecular surface tensions 
and hydrogen-bond acidity and basicity, which has been 
proven to be an effective tool to investigate on a variety 
of solution phase physicochemical properties. Solvation 
of selected species was finally considered in terms of the 
intermolecular hydrogen bonds (IHBs) (see Table I and 
Figure 2) (Remko, 2010).

RESULTS AND DISCUSSION

Muscimol naturally have both keto and enol forms 
(Oster, Harris, 1983). Fully protonated muscimol can lose 
two acidic hydrogens. The first proton can be lost from OH 
group and the second one from NH2 group (Figure 2). In 
this study, several models of muscimol were investigated 
by the DFT-B3LYP/6-31G(d)/SMD method. Different 
reactions including cationic, neutral, and anionic species 
were tested and some of them were finally chosen for 
the studied system. Table II shows the selected reactions 

TABLE I - Calculated free energies (G0
sol) using the solvation 

model density (SMD) method at the B3LYP/6-31G(d) level of 
theory for cationic (H2L+), neutral (HL), and anionic (L-) species 
of muscimol molecule with or without water clusters

N Solvated  
species

G°sol 
(Hartree)

Go
sol/molecule 

(kcal·mol-1)
1 H2L+(H2O) -493.397 -309611.173
1 HL(H2O) -492.923 -309313.670
1 L-(H2O) -492.453 -309018.945
2 HL(H2O)2 -569.353 -357274.383
2 H2L+(H2O)2 -569.827 -357572.034
2 L-(H2O)2 -568.891 -356984.479
3 L-(H2O)3 -645.322 -404945.445
3 H2L+(H2O)3 -646.262 -405535.288
3 HL(H2O)3 -645.805 -405248.526
0 HL -416.485 -261348.477
0 H2L+ -416.959 -261645.854
0 L- -416.015 -261053.431
1 H2O -76.437 -47965.159
2 (H2O)2 -152.880 -95933.519
3 (H2O)3 -229.321 -143901.311
0 OH- -75.949 -47658.671
1 OH-(H20) -152.397 -95630.633
2 OH-(H2O)2 -228.845 -143602.626
3 OH-(H2O)3 -305.226 -191531.917
N: total number of solvation water molecules; (G0

sol): free energy 
in solution

N
O

HO

NH2

FIGURE 1 – Planar structure of muscimol molecule (The figure 
was generated using the Spartan 08 programa.) a: Young, 2001; 
Spartan, 2008.
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FIGURE 2 – Optimized molecular structure for muscimol 
clusters in presence of water molecules using the solvation 
model density (SMD) method. The most important hydrogen 
bond distances are shown in figures (green lines) and its distance 
are in angstrom (red number). The figures were generated using 
the Spartan 08 programa. The carbon atoms are represented by 
gray circles, oxygen, red; nitrogen, purple and hydrogen atoms, 
yellow sticks. a: Young, 2001; Spartan, 2008.

and calculated pKa values of muscimol together with the 
relative deviations (RD) for pKa which can be obtained 
from the following equation:

)(exp

)(exp)(

erimental

erimentalcalculated

pKa
pKapKa

RD
−

= 	 (Equation 1)

The very low values of RD (for pKa) (see Table II) 
show that there is a good agreement between experimental 
and calculated values of pKa for muscimol .

First Ionization Constant of Muscimol

It was selected that in alkaline solutions muscimol 
suffers a total neutralization as follows:

H2L+ (H2O) + OH- (H2O)3 ⇄ HL(H2O)2 + 3H2O (Equation 2)

In the above reaction, H2L+(H2O) is the cluster of 
a cationic muscimol with one molecule of water, and 
HL(H2O)2 represents a cluster of neutral muscimol with 
two water molecules. The above reaction was used to 
determine value of the first ionization constant of muscimol 
in water. Table II shows the calculated pKa values and the 
difference of free energy between [HL(H2O)2, 3H2O] and 
[H2L+(H2O), OH-(H2O)3] according to Equation 2 obtained 
at the B3LYP/6-31G(d)/SMD level of theory.

Second Ionization Constant of Muscimol

It is selected that the neutral HL suffers a reaction of 
partial neutralization as follows:

HL+OH-(H2O)3 ⇄ L-(H2O)2+2H2O 	  (Equation 3)

In the above reaction, HL and L-(H2O)2 represent 
the neutral and anionic cluster forms of muscimol, 
respectively. The above reaction was used to determine 
value of the second ionization constant of muscimol in 
water. Table II shows the calculated pKa and the difference 
of free energy between [L-(H2O)2, 2H2O] and [HL, OH-

(H2O)3] according to Equation 3 obtained at the B3LYP/6-
31G(d) level of theory with solvation model density 
(SMD) method in water.

The pKa determination method was previously 
described, and its values for muscimol were used in this 
work (Krogsgaard-Larsen et al., 1980; Brehm et al., 
1997). These values are listed in Table II together with 
the calculated values using the solvation model density 

TABLE II – Values of the ΔG, pKa, and relative deviations (RD) of pKa for muscimol obtained using the B3LYP/6-31G(d)/SMD

Selected equations ΔG (Hartree) 
calculated

pKa (calculated) 
this work pKa (experimental) (RD) for pKa

H2L+ (H2O) + OH- (H2O)3 ⇄ HL(H2O)2 + 3H2O -0.052 4.734 4.8a 0.0137

HL+OH-(H2O)3 ⇄ L-(H2O)2+2H2O -0.060 8.402 8.4a 0.0002
a: (Krogsgaard-Larsen et al., 1980) (Brehm et al., 1997)
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(SMD) method at the B3LYP/6-31G(d) level of theory. 
The total energies of single and solvated muscimol species 
(cationic, neutral, and anionic) were calculated in water. 
Table I summarizes the variations of the free energy 
(G0

sol, kcal.mol-1) per water molecule as a function of the 
total number of solvation water molecules for muscimol 
species. Figure 3 and Table I show the marked decrease 
of the total energies of ions when the number of solvation 
molecules increases.

The data of Table III shows that water, exerting 
its hydrogen bond donor (HBD) capability, forms 
intermolecular hydrogen bonds (IHBs) with the muscimol 
molecule. These hydrogen bonds can be classified as 
strong, moderate, and weak, according to their lengths, 
angles, and energies (Cilli et al., 1996; Corradi et al., 
2000). According to ref (Blanco, Almandoz, Ferretti, 
2005), the properties of the moderate hydrogen bonds 
have the following classification: bond lengths of H·B 
is between (1.5 and 2.2) Å and the bond angle is 130° 
to 180°. For weak hydrogen bonds, the bond length and 
angle are (2.2 to 3.2) Å and 90° to 150°, respectively, and 

for strong hydrogen bonds are (1.2 to 1.5) Å and 175° to 
180°, respectively. 

Molecular surface and volumes of muscimol’s 
cluster were calculated using solvation model density 
(SMD) method and are summarized in Table IV.

The volume of clusters may be affected by two main 
factors. The first factor is the number and volume of atoms 
or molecules (solute and solvent) which form a cluster. 
The second factor is the interaction between positive or 
negative charge of ions (solute) and electrons of solvent 
molecules. The second factor can be more used in cases 
that clusters have (approximately) the same number and 
type of atoms or molecules.

The volume values (V) for the species of muscimol’s 
cluster fall in the order of: 

V[L-(H2O)2] > V[HL(H2O)2] > V[H2L+(H2O)] > V[HL] 

As seen in the above order (and Table IV), HL has 
the minimum volume among four species of muscimol. 
The first factor is more effective in this case. HL has only 
one hydrogen atom but other species have hydrogen atom 
(or atoms) and water molecule (or molecules). The volume 
of hydrogen atom is less than water molecule.

TABLE IV - Calculated molecular surfaces (Å2) and Van der 
Waals volumes (Å3) of different species in equations 2 and 3 
for muscimol molecule by using the solvation model density 
(SMD) method

Solvated species Molecular surface 
(Å2)

Molecular volume 
(Å3)

H2L+(H2O) 171.125 135.259
HL(H2O)2 179.922 147.591
HL 162.709 115.696
L-(H2O)2 183.417 148.247

TABLE III - Intermolecular hydrogen bonds (IHBs) information of all muscimol species. Values were taken from Cilli et al. (1996) 
and Corradi et al. (2000)

Species Angle Value of angle 
(°)

IHBs distance 
(Å) Strength of IHB

HL(H2O)2

O-H-N 168.592 1.739 Moderate
O-H-N 160.843 1.801 Moderate

L-(H2O)2

O-H-N 124.947 2.246 Weak
O-H-O 159.325 1.783 Moderate
C-O-H 108.373 2.829 Weak
O-H-O 155.781 1.859 Moderate

H2L+(H2O) O-H-N 173.467 1.680 Moderate

FIGURE 3 - Plot of the total energies (Hartree) of the solvated 
muscimol per water molecules against the total number of 
solvation water molecules.
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As an example, the calculated surface of HL(H2O)2 
is shown in Figure 4. It is reasonable to observe that 
molecular volume of the drugs solvated with two water 
molecules is approximately the sum of the molecular 
volumes of the species that form it (Figure 4).

CONCLUSION

The pKa values of muscimol (in water) have been 
predicted using the density functional theory calculation.

In summary, free energies and other molecular 
parameters were calculated for muscimol molecule, using 
the B3LYP/6-31G(d)/SMD method for shown species in 
Tables I, II and III. As shown in Table II, the theoretically 
calculated pKa values are very close to the experimentally 
calculated pKa values. So we can conclude that cluster 
continuum model, which uses implicit and explicit 
solvation model, is probably a good way of calculating 
pKa values for biochemical systems.
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FIGURE 4 – Calculated molecular surface (wireframe) of 
HL(H2O)2 using the SMD method at the B3LYP/6-31G(d) level 
of theory. The carbon atoms are represented by gray circles, 
oxygen, red; nitrogen, purple and hydrogen atoms, white balls.
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