10 research outputs found
Declining Orangutan Encounter Rates from Wallace to the Present Suggest the Species Was Once More Abundant
BACKGROUND: Bornean orangutans (Pongo pygmaeus) currently occur at low densities and seeing a wild one is a rare event. Compared to present low encounter rates of orangutans, it is striking how many orangutan each day historic collectors like Alfred Russel Wallace were able to shoot continuously over weeks or even months. Does that indicate that some 150 years ago encounter rates with orangutans, or their densities, were higher than now?
METHODOLOGY/PRINCIPAL FINDINGS: We test this hypothesis by quantifying encounter rates obtained from hunting accounts, museum collections, and recent field studies, and analysing whether there is a declining trend over time. Logistic regression analyses of our data support such a decline on Borneo between the mid-19th century and the present. Even when controlled for variation in the size of survey and hunting teams and the durations of expeditions, mean daily encounter rates appear to have declined about 6-fold in areas with little or no forest disturbance.
CONCLUSIONS/SIGNIFICANCE: This finding has potential consequences for our understanding of orangutans, because it suggests that Bornean orangutans once occurred at higher densities. We explore potential explanations-habitat loss and degradation, hunting, and disease-and conclude that hunting fits the observed patterns best. This suggests that hunting has been underestimated as a key causal factor of orangutan density and distribution, and that species population declines have been more severe than previously estimated based on habitat loss only. Our findings may require us to rethink the biology of orangutans, with much of our ecological understanding possibly being based on field studies of animals living at lower densities than they did historically. Our approach of quantifying species encounter rates from historic data demonstrates that this method can yield valuable information about the ecology and population density of species in the past, providing new insight into species' conservation needs
A diurnal rhythm in brown adipose tissue causes rapid clearance and combustion of plasma lipids at wakening
Many favorable metabolic effects have been attributed to thermogenic activity of brown adipose tissue (BAT). Yet, time of day has rarely been considered in this field of research. Here, we show that a diurnal rhythm in BAT activity regulates plasma lipid metabolism. We observed a high-amplitude rhythm in fatty acid uptake by BAT that synchronized with the light/dark cycle. Highest uptake was found at the onset of the active period, which coincided with high lipoprotein lipase expression and low angiopoietin-like 4 expression by BAT. Diurnal rhythmicity in BAT activity determined the rate at which lipids were cleared from the circulation, thereby imposing the daily rhythm in plasma lipid concentrations. In mice as well as humans, postprandial lipid excursions were nearly absent at waking. We anticipate that diurnal BAT activity is an important factor to consider when studying the therapeutic potential of promoting BAT activity
A Diurnal Rhythm in Brown Adipose Tissue Causes Rapid Clearance and Combustion of Plasma Lipids at Wakening
Many favorable metabolic effects have been attributed to thermogenic activity of brown adipose tissue (BAT). Yet, time of day has rarely been considered in this field of research. Here, we show that a diurnal rhythm in BAT activity regulates plasma lipid metabolism. We observed a high-amplitude rhythm in fatty acid uptake by BAT that synchronized with the light/dark cycle. Highest uptake was found at the onset of the active period, which coincided with high lipoprotein lipase expression and low angiopoietin-like 4 expression by BAT. Diurnal rhythmicity in BAT activity determined the rate at which lipids were cleared from the circulation, thereby imposing the daily rhythm in plasma lipid concentrations. In mice as well as humans, postprandial lipid excursions were nearly absent at waking. We anticipate that diurnal BAT activity is an important factor to consider when studying the therapeutic potential of promoting BAT activity. van den Berg et al. show a strong circadian rhythm in fatty acid uptake by brown adipose tissue that peaks at wakening regardless of the light exposure period. Consequently, postprandial lipid handling by brown adipose tissue is highest at wakening, resulting in the lowest postprandial plasma lipid excursions
A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters, with an emphasis on the rails (Rallidae)
The order Gruiformes, for which even familial composition remains controversial, is perhaps the least well understood avian order from a phylogenetic perspective. The history of the systematics of the order is presented, and the ecological and biogeographic characteristics of its members are summarized. Using cladistic techniques, phylogenetic relationships among fossil and modern genera of the Gruiformes were estimated based on 381 primarily osteological characters; relationships among modern species of Grues (Psophiidae, Aramidae, Gruidae, Heliornithidae and Rallidae) were assessed based on these characters augmented by 189 characters of the definitive integument. A strict consensus tree for 20,000 shortest trees compiled for the matrix of gruiform genera (length = 967, CI = 0.517) revealed a number of nodes common to the solution set, many of which were robust to bootstrapping and had substantial support (Bremer) indices. Robust nodes included those supporting: a sister relationship between the Pedionomidae and Turnicidae; monophyly of the Gruiformes exclusive of the Pedionomidae and Turnicidae; a sister relationship between the Cariamidae and Phorusrhacoidea; a sister relationship between a clade comprising Eurypyga and Messelornis and one comprising Rhynochetos and Aptornis; monophyly of the Grues (Psophiidae, Aramidae, Gruidae, Heliornithidae and Rallidae); monophyly of a clade (Gruoidea) comprising (in order of increasingly close relationship) Psophia, Aramus, Balearica and other Gruidae, with monophyly of each member in this series confirmed; a sister relationship between the Heliornithidae and Rallidae; and monophyly of the Rallidae exclusive of Himantornis. Autapomorphic divergence was comparatively high for Pedionomus, Eurypyga, Psophia, Himantornis and Fulica; extreme autapomorphy, much of which is unique for the order, characterized the extinct, flightless Aptornis. In the species-level analysis of modern Grues, special efforts were made to limit the analytical impacts of homoplasy related to flightlessness in a number of rallid lineages. A strict consensus tree of 20,000 shortest trees compiled (length = 1232, CI = 0.463) confirmed the interfamilial relationships resolved in the ordinal analysis and established a number of other, variably supported groups within the Rallidae. Groupings within the Rallidae included: monophyly of Rallidae exclusive of Himantornis and a clade comprising Porphyrio (including Notornis) and Porphyrula; a poorly resolved, basal group of genera including Gymnocrex, Habroptila, Eulabeornis, Aramides, Canirallus and Mentocrex; an intermediate grade comprising Anurolimnas, Amaurolimnas, and Rougetius; monophyly of two major subdivisions of remaining rallids, one comprising Rallina (paraphyletic), Rallicula, and Sarothrura, and the other comprising the apparently paraphyletic 'long-billed' rails (e.g. Pardirallus, Cyanolimnas, Rallus, Gallirallus and Cabalus and a variably resolved clade comprising 'crakes' (e.g. Atlantisia, Laterallus and Porzana, waterhens (Amaurornis), moorhens (Gallinula and allied genera) and coots (Fulica). Relationships among 'crakes' remain poorly resolved; Laterallus may be paraphyletic, and Porzana is evidently polyphyletic and poses substantial challenges for reconciliation with current taxonomy. Relationships among the species of waterhens, moorhens and coots, however, were comparatively well resolved, and exhaustive, fine-scale analyses of several genera (Grus, Porphyrio, Aramides, Rallus, Laterallus and Fulica) and species complexes (Porphyrio porphyrio -group,Gallirallus philippensis -group and Fulica americana -group) revealed additional topological likelihoods. Many nodes shared by a majority of the shortest trees under equal weighting were common to all shortest trees found following one or two iterations of successive weighting of characters. Provisional placements of selected subfossil rallids (e.g. Diaphorapteryx, Aphanapteryx and Capellirallus ) were based on separate heuristic searches using the strict consensus tree for modern rallids as a backbone constraint. These analyses were considered with respect to assessments of robustness, homoplasy related to flightlessness, challenges and importance of fossils in cladistic analysis, previously published studies and biogeography, and an annotated phylogenetic classification of the Gruiformes is proposed