1,613 research outputs found

    Electronic structure and experimental benchmarking of aluminum spinels for solar water splitting

    Get PDF
    A computational methodology for screening aluminum-based spinel oxides for photoelectrochemical water splitting has been developed by combining HSE06 and PBE + U calculations. The method, which can be extended to other ternary oxides, provides values for formation energies, band gaps, band edge positions, and carrier effective masses. The formation energies indicate that the Al spinels of Mg, Co, Ni, and Zn (successfully synthesized using a sol-gel method) are among the most stable in the series. Except for the Mg and Zn cases, the electronic structures of the spinels are rather similar, with band gaps separating occupied and empty 3 d metal states. The charge-transfer band gap values are found to be above 3 eV, limiting the use of these materials in solar water splitting, although an estimate of the band edge positions indicates that, in general, both conduction band electrons and valence band holes can promote water reduction and oxidation, respectively. The effective masses of the charge carriers suggests that the spinels are n-type semiconductors as experimentally demonstrated. Importantly, both the UV–vis spectra and the photoelectrochemical results qualitatively agree with the theoretical electronic structure. In general vein, this work demonstrates the potential of theoretical screening for the development and selection of new photoelectrode materials based on ternary oxides for their application in solar water splitting.The authors gratefully acknowledge funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 760930 (FotoH2 project). This research was also partially funded by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/Fondos FEDER through project PID2021-128876OB-I00 and by the Generalitat Valenciana through project PROMETEO/2020/089. F.J.P. also acknowledges the Spanish Ministry of Education for the award of an FPU grant

    Buffer layers inhomogeneity and coupling with epitaxial graphene unravelled by Raman scattering and graphene peeling

    Get PDF
    The so-called buffer layer (BL) is a carbon rich reconstructed layer formed during the sublimation of SiC (0001). The existence of covalent bonds between some of the carbon atoms in this layer and the underlying silicon atoms makes it different from epitaxial graphene. We report a systematical and statistical investigation of the BL signature and its coupling with epitaxial graphene by Raman spectroscopy. Three different kinds of BLs are studied: bare buffer layer obtained by direct growth (BL 0), interfacial buffer layer situated between graphene and SiC (c-BL 1) and the interfacial buffer layer without graphene above (u-BL 1). To obtain the latter, we develop a mechanical exfoliation of graphene by depositing and subsequently removing an epoxy-based resin or nickel layer. The observed BLs are ordered-like on the whole BL growth temperature range. BL 0 Raman signature may vary from sample to sample but also forms patches on the same terrace. u-BL 1 share similar properties with BL 0 , albeit with more variability. These BLs have a strikingly larger overall intensity than BL with graphene on top. The signal onset on the high frequency side upshifts upon graphene coverage, that cannot be explained by a simple strain effect. Two fine peaks situated at 1235 and 1360 cm-1 are present for epitaxial monolayer while absent for BL and transferred graphene. These findings point to a coupling between graphene and BL

    Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a NiFe-Oxide co-Catalyst

    Get PDF
    Tandem photoelectrochemical cells (PECs), made up of a solid electrolyte membrane between two low-cost photoelectrodes, were investigated to produce “green” hydrogen by exploiting renewable solar energy. The assembly of the PEC consisted of an anionic solid polymer electrolyte membrane (gas separator) clamped between an n-type Fe2O3 photoanode and a p-type CuO photocathode. The semiconductors were deposited on fluorine-doped tin oxide (FTO) transparent substrates and the cell was investigated with the hematite surface directly exposed to a solar simulator. Ionomer dispersions obtained from the dissolution of commercial polymers in the appropriate solvents were employed as an ionic interface with the photoelectrodes. Thus, the overall photoelectrochemical water splitting occurred in two membrane-separated compartments, i.e., the oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode. A cost-effective NiFeOx co-catalyst was deposited on the hematite photoanode surface and investigated as a surface catalytic enhancer in order to improve the OER kinetics, this reaction being the rate-determining step of the entire process. The co-catalyst was compared with other well-known OER electrocatalysts such as La0.6Sr0.4Fe0.8CoO3 (LSFCO) perovskite and IrRuOx. The Ni-Fe oxide was the most promising co-catalyst for the oxygen evolution in the anionic environment in terms of an enhanced PEC photocurrent and efficiency. The materials were physico-chemically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM).Authors gratefully acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 760930 (FotoH2 project)

    Synthetic anionic surfaces can replace microparticles in stimulating burst coagulation of blood plasma

    Get PDF
    Biomaterials are frequently evaluated for pro-coagulant activity but usually in the presence of microparticles (MPs), cell-derived vesicles in blood plasma whose phospholipid surfaces allow coagulation factors to set up as functional assemblies. We tested the hypothesis that synthetic anionic surfaces can catalyze burst thrombin activation in human blood plasma in the absence of MPs. In a thromboelastography (TEG) assay with plastic sample cups and pins, recalcified human citrated platelet-poor plasma spontaneously burst-coagulated but with an unpredictable clotting time whereas plasma depleted of MPs by ultracentrifugation failed to coagulate. Coagulation of MP-depleted plasma was restored in a dose-dependent manner by glass microbeads, hydroxyapatite nanoparticles (HA NPs), and carboxylic acid-containing anionic nanocoatings of TEG cups and pins (coated by glow-discharge plasma-polymerized ethylene containing oxygen, L-PPE:O with 4.4 and 6.8 atomic % [COOH]). Glass beads lost their pro-coagulant activity in MP-depleted plasma after their surfaces were nanocoated with hydrophobic plasma-polymerized hexamethyl disiloxane (PP-HMDSO). In FXII-depleted MP-depleted plasma, glass microbeads failed to induce coagulation, however, FXIa was sufficient to induce coagulation in a dose-dependent manner, with no effect of glass beads. These data suggest that anionic surfaces of crystalline, organic, and amorphous solid synthetic materials catalyze explosive thrombin generation in MP-depleted plasma by activating the FXII-dependent intrinsic contact pathway. The data also show that microparticles are pro-coagulant surfaces whose activity has been largely overlooked in many coagulation studies to-date. These results suggest a possible mechanism by which anionic biomaterial surfaces induce bone healing by contact osteogenesis, through fibrin clot formation in the absence of platelet activation.Fil: Contreras García, Angel. École Polytechnique de Montréal. Department of Engineering Physics. Groupe de Physique et Technologie des Couches Minces; CanadáFil: D'elía, Noelia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. École Polytechnique de Montréal. Department of Engineering Physics; CanadáFil: Desgagné, Maxime. École Polytechnique de Montréal. Department of Engineering Physics; CanadáFil: Lafantaisie Favreau, Charles Hubert. École Polytechnique de Montréal. Department of Engineering Physics; CanadáFil: Rivard, Georges Étienne. CHU Sainte-Justine; CanadáFil: Ruiz, Juan Carlos. Universidad Autónoma Metropolitana; MéxicoFil: Wertheimer, Michael Robert. École Polytechnique de Montréal. Department of Engineering Physics. Groupe de Physique et Technologie des Couches Minces; Canadá. École Polytechnique de Montréal. Institute of Biomedical Engineering; CanadáFil: Messina, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Hoemann, Caroline Dieckmann. École Polytechnique de Montréal. Department of Engineering Physics; Canadá. École Polytechnique de Montréal. Institute of Biomedical Engineering; Canad

    Reconstruction of ancient microbial genomes from the human gut

    Get PDF
    Loss of gut microbial diversity in industrial populations is associated with chronic diseases, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces

    Gammapy: A Python package for gamma-ray astronomy

    Full text link
    In this article, we present Gammapy, an open-source Python package for the analysis of astronomical γ\gamma-ray data, and illustrate the functionalities of its first long-term-support release, version 1.0. Built on the modern Python scientific ecosystem, Gammapy provides a uniform platform for reducing and modeling data from different γ\gamma-ray instruments for many analysis scenarios. Gammapy complies with several well-established data conventions in high-energy astrophysics, providing serialized data products that are interoperable with other software packages. Starting from event lists and instrument response functions, Gammapy provides functionalities to reduce these data by binning them in energy and sky coordinates. Several techniques for background estimation are implemented in the package to handle the residual hadronic background affecting γ\gamma-ray instruments. After the data are binned, the flux and morphology of one or more γ\gamma-ray sources can be estimated using Poisson maximum likelihood fitting and assuming a variety of spectral, temporal, and spatial models. Estimation of flux points, likelihood profiles, and light curves is also supported. After describing the structure of the package, we show, using publicly available γ\gamma-ray data, the capabilities of Gammapy in multiple traditional and novel γ\gamma-ray analysis scenarios, such as spectral and spectro-morphological modeling and estimations of a spectral energy distribution and a light curve. Its flexibility and power are displayed in a final multi-instrument example, where datasets from different instruments, at different stages of data reduction, are simultaneously fitted with an astrophysical flux model.Comment: 26 pages, 16 figure

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
    corecore