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Abstract 

The so-called buffer layer (BL) is a carbon rich reconstructed layer formed during SiC (0001) sublimation. 

The covalent bonds between some carbon atoms in this layer and underlying silicon atoms makes it 

different from epitaxial graphene. We report a systematical and statistical investigation of the BL signature 

and its coupling with epitaxial graphene by Raman spectroscopy. Three different BLs are studied: bare 

buffer layer obtained by direct growth (BL0), interfacial buffer layer between graphene and SiC (c-BL1) 

and the interfacial buffer layer without graphene above (u-BL1). To obtain the latter, we develop a 

mechanical exfoliation of graphene by removing an epoxy-based resin or nickel layer. The BLs are 

ordered-like on the whole BL growth temperature range. BL0 Raman signature may vary from sample to 

sample but forms patches on the same terrace. u-BL1 share similar properties with BL0, albeit with more 

variability. These BLs have a strikingly larger overall intensity than BL with graphene on top. The signal 

high frequency side onset upshifts upon graphene coverage, unexplainable by a simple strain effect. Two 

fine peaks (1235, 1360 cm-1), present for epitaxial monolayer and absent for BL and transferred graphene. 

These findings point to a coupling between graphene and BL. 

Keywords: buffer layer, graphene, Raman sectroscopy, mechanical peeling 
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1. Introduction 

Epitaxial graphene (EG) grown on silicon carbide (SiC) by sublimation has been considered as one of 

the most promising candidates for the graphene-based nanoelectronic device fabrication. Especially in the 

field of metrology, the EG-based resistance standard has already been largely developed in a decade [1–

3]. The accessibility of wafer-scale and high-quality graphene films achieved by sublimation on Si-face 

of SiC (0001) under argon (Ar) pressure is one of the major advantages of this growth method [4–6]. 

During the high temperature annealing, the SiC surface undergoes several reconstructions phases before 

graphene formation [7–12]. The carbon-rich reconstructed layer on top of SiC(0001) is well known as 

buffer layer (BL). The BL is a layer of carbon atoms arranged in a honeycomb structure with partially sp3 

hybridization [10,13–15]. Based on the X-ray photoelectron spectroscopy (XPS) results, about 1/3 of the 

carbon atoms are covalently bonded to the silicon atoms of the SiC substrate, leading to the sp3 

hybridization in BL which differs from sp2 graphene layer [11,13]. We name BL0 the first BL to grow. 

Further sublimation generates a new carbon layer at the interface of the previous BL and the SiC substrate 

[16]. Meanwhile, the previous BL detaches from the substrate and converts into the first graphene layer. 

The new carbon layer is the interfacial BL (named BL1). 

In the literature, there is an intense debate about the BL atomic structure. Several BL structures have 

been proposed and investigated theoretically [17,18]. The scanning tunneling microscopy (STM) images 

commonly show a (6 × 6) structure of BL which do not agree with the low-energy electron diffraction 

(LEED) patterns showing a 6!3 × 6!3"30° reconstruction [7–12]. According to the calculation of S. 

Kim et al. [19], the (6 × 6) structure in STM images is the result of the atomic corrugations due to the 

presence of underlying BL and from the weak electronic interaction between EG and BL. Furthermore, 

the early XPS studies have estimated that about 1/3 of carbon atoms in BL are covalently bonded to the 

substrate [10,13] while the recent study of Conrad et al. [20] have suggested that this ratio is no more than 

26%. Regarding the electrical properties, angle-resolved photoelectron spectroscopy (ARPES) 

measurement highlighted that the existing covalent bonds suppress the #$bands of graphene. The early 

results showed a wide gap insulator characteristic of BL [11,13] while the picture changed recently and 

found the BL to be a true semiconductor [21,22].  

Raman spectroscopy is largely used to study the structural and electronic properties of carbon structure 

[23–27]. Several works have shown the Raman spectra of bare buffer layer (BL0) which is the first carbon 

layer formed without topmost graphene growth (Fig. 1a). Different types of have been reported, with two 

main broad peaks [28–30] or with three main peaks [6,31–34]. Although the discrepancies of these 
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reported spectra are significant, there is still no systematic and statistical analysis aiming to understand 

this disagreement.  

Besides BL0, it is widely accepted that the interfacial BL (graphene covered BL, c-BL1, Fig. 1b) which 

is situated between graphene and the substrate has an important influence on the topmost EG in terms of 

electronic and structural properties of grown graphene. The intrinsic n-type doping observed in EG has 

been explained by the electrons transfer between the BL and SiC substrate [11,13]. Furthermore, the strain 

effect of BL on EG has been evidenced by grazing incidence X-ray diffraction measurement [30]. These 

mentioned substrate influences on EG have been supported by a post-growth hydrogen intercalation 

treatment which can saturate the bonds between substrate and BL, converting the latter into real graphene 

layer [11,35]. The influence of graphene on BL was considered in a former Raman analysis, where a 

decrease in Raman integrated intensity of BL, with a ratio of 3 after the growth of EG, was observed [28]. 

An open question remained, whether the difference in integrated intensity is due to the graphene overlayer 

presence or due to a difference in growth environment. For instance, the BL1 forms with a carbon layer 

above and the growth temperature of BL0 and BL1 are different. Thus, there still remains considerable 

work to understand and control this graphene/SiC (0001) interface structure.  

This work is a systematic and statistic investigation of the BL signature and its interaction with topmost 

graphene using Raman spectroscopy. The first buffer layer (BL0) is investigated in section 3.1. Then to 

determine whether the reduction in buffer signal discussed above is due to the mere presence of graphene, 

we develop a peeling technique to mechanically remove the graphene layer from c-BL1 in section 3.2.1. 

This technique, illustrated in figure 1c, exposes the now uncovered BL1 (u-BL1) without topmost 

graphene. This u-BL1 is compared to BL0 in section 3.2.2. Finally, both non-covered buffers (BL0 and u-

BL1) are compared to covered BL1 (c-BL1) in section 3.2.3. 

 

 
 

Figure 1: Schematic illustration of three types of BLs: (a) bare buffer layer BL0, (b) still covered interfacial 

buffer layer (c-BL1) [NB: in terms of samples, “1LG” and “c-BL1” are one and the same] and (c) 

uncovered interfacial buffer layer (u-BL1) obtain by peeling of the graphene layer. 
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2. Experimental details 

The studied samples were grown on 6 mm × 6 mm, on-axis, semi-insulating 4H-SiC (0001), cut from a 

3 inch Tankeblue wafer and epi-ready polished on the Si-face by NovaSiC. SiC (0001) sublimation was 

conducted in an Annealsys Zenith-100, a high temperature RTP (Rapid Thermal Processing) - CVD 

furnace. During the entire sample growth process, we kept a low argon pressure (10 mbar, 800 sccm) in 

the chamber. The annealing temperature is ranged between 1600 and 1740°C for BL0 investigations, and 

fixed at 1750°C for monolayer EG samples. More details of the furnace system and sample preparation 

process were presented in our early work [6]. 

The mechanical peeling of graphene has been performed on our EG samples. This exfoliation process 

is illustrated in figure 2. On the pristine sample image, the terrace edges are clearly visible (Fig. 2a). In a 

first step, an epoxy-based resin (M-bond 610) or Ni film has been deposited on the whole sample surface 

(Fig. 2b). Then, due to the higher binding energy between resin (or Ni, less than 50 nm thick) and graphene 

compared to that between graphene and BL [36,37], by pulling the handling layer, graphene can be 

mechanically peeled (Fig. 2c). The handling layer is either a microscope coverslip for M-bond 610 or a 

thermal release tape for Ni. Therefore, only uncovered buffer (u-BL1) was left on the SiC substrate while 

the graphene layer was transferred onto the deposited thin epoxy-based resin or Ni film (Fig. 2d). Both 

the SiC and the resin substrates have higher refractive index than air, so that graphene appears brighter on 

the optical image in reflection mode. The graphene on the central terrace in the red ellipse failed to be 

transferred. Indeed, graphene is missing in the darker corresponding area in the resin image. This image 

is mostly bright, an indication that the peeling process is rather efficient. 
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Figure 2: Graphene peeling process. Schematic cross section and optical images at different stages: (a) 

pristine sample with covered buffer (c-BL1), (b) after resin or Ni deposition, (c) handling layer addition 

on top to mechanically remove resin (or Ni) and graphene layers and (d) resulting pieces: left, uncovered 

buffer on SiC (u-BL1) and right, transferred graphene (t-1LG) on resin or Ni layer. To ease images 

comparison, a mirror operation was applied to the last image, and a black arrow and a red ellipse were 

overlaid. 

Raman spectra and maps were recorded using an Acton spectrometer fitted with a Pylon CCD detector 

and a 600 grooves/mm grating (~2.5 cm-1 between CCD pixels). The samples were excited with a 532 nm 

(2.33 eV) laser line (Millennia Prime, Newport) through a ×100 objective (numerical aperture 0.9, 

Olympus). The full width at half-maximum (FWHM) of the focused laser spot is about 400 nm. Optimized 

focus conditions were checked for each measurement. The samples were mounted on a three-axis 

piezoelectric stage (Physik Instrumente) to ensure the precise positioning and focusing of the laser spot. 

A HOPG (Highly Oriented Pyrolytic Graphite) sample was used as a daily reference for the system 

calibration. Laser power was continuously measured during acquisitions allowing intensity normalizations 
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of the Raman spectra and maps. We have developed three distinct home-made Labview software dedicated 

to repositioning, acquisition and analysis. The first one, combined to optical microscopy and piezoelectric 

stage allowed a repeated imaging of the same area, with a micrometric precision. For instance, it enables 

to study the same location before and after the graphene peeling experiment. The second one controlled 

the whole experimental setup. Finally, all data were analyzed using the third one. In particular, graphene 

or BL Raman spectra have been obtained by subtracting the Raman spectrum of the bare SiC substrate 

(see supplement, Part A). We note that the individual spectra and integrated intensity calculated for certain 

spectral region were normalized by dividing the value of the integrated intensity of G-peak (%&) by the 

one of the corresponding HOPG reference (%&
'()&) allowing the comparison between spectra or maps 

made at different times: 

%&
*+,- = %& %&

'()&.  

3. Results and discussion 

We investigate here first the characteristics of the direct growth buffer (BL0) in part 3.1. The graphene 

peeling results are described in part 3.2.1, then the Raman responses of BLs without graphene on top, BL0 

and the uncovered buffer (u-BL1), are compared in part 3.2.2. Finally, the comparison is extended to the 

graphene covered BL, the c-BL1, in part 3.2.3. 

3.1 Inhomogeneity of bare buffer layer (BL0) 

Figure 3a shows the Raman A2D map collected from a direct growth BL0 sample (sample DG1, zone A 

- DG stands for Direct Growth). By comparison with the corresponding optical image (Fig. S9) and 

analyzing the Raman data, we identify two graphene ribbons located close to step edges and BL0 on two 

SiC terraces. We denote the left and right terraces as terrace 1 and terrace 2, respectively. Their 

representative average spectra are shown in figure 3b. These two average spectra collected from two 

neighboring terraces are significantly different. Noticeably, the broad peaks situated close to 1390 cm-1 

and 1620 cm-1 have higher intensity on terrace 2 than on terrace 1.  

In the literature, BL signature is usually fitted by Gaussian functions [6,31,32]. These Gaussians are 

very broad and their physical meaning is not clear, especially for the contribution centered about 1550 cm-

1. 
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All spectra presented two dips almost at the same position. So, we have chosen to divide this range in 

three regions: i) 1260 to 1460 cm-1; ii) 1460 to 1550 cm -1; iii) 1550 to 1710 cm-1, denoted as R1, R2 and 

R3 (inset image of Fig. 3b) and to use their numerically integrated intensities as metrics to capture the 

differences in the measured spectra. This method presents several advantages. Three simple integrations 

are faster than a fit with 4 Gaussians. Moreover, the integration is clear and straightforward while the fit 

can be sensitive to initial parameters. The integrated areas of each region, AR1, AR2 and AR3 were 

normalized by integrated intensity of the monolayer graphene taken as /124575 = 0803$/129:;1 [38] and 

indicated as /<>
75?4 in figures 3 and 4. 

To give more statistical details, points of the Raman map corresponding to BL (A2D < 150 counts s-

1 cm-1 in figure 3a; see sup. info. part C for the detailed justification for this criteria) are plotted in /<@
75?4 

and /<A
75?4 coordinates (Fig. 3c). Points from terrace 1 and 2 are displayed as open purple and solid blue 

circles, respectively. Points from a given terrace are bunched together which confirms that the average 

spectra in figure 3b are relevant. On terrace 2 both /<@
75?4 and /<A

75?4$are higher than on terrace 1. These 

results demonstrate that the BL Raman signature can be very different even on the same sample.  

This striking difference deserved an extended investigation summarized in figure 4. In figure 4a, we 

completed figure 3c, adding results of another zone of sample DG1 (zone B) and of samples DG2, DG3, 

DG4 and DG5. We note that, each studied areas, spanned more than one terrace. In addition, we found 

that both /<@
75?4  and /<A

75?4, values acquired from one single terrace are relatively homogeneous, 

evidenced by a narrow distribution.  

 

Figure 3: Raman analysis of sample DG1. (a) Raman A2D map. Navy-blue areas correspond to BL0 on 

two terraces, while green areas correspond to EG. (b) Average spectra of terrace 1 (purple) and terrace 2 

(blue). Inset: zoom between 1200 and 1800 cm-1. The vertical bars at 1260, 1460, 1550 and 1710 cm-1 

delimit the 3 regions R1, R2 and R3 used in our analysis. (c) Relationship between /<@
75?4  and /<A

75?4$ 

for the two terraces. 
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These scatter plots, varying with different terraces of a same sample and with different samples, 

confirmed an inhomogeneous Raman signature of BL0. For instance, /<@
75?4$varies by more than a 2.5 

factor. Moreover, figure 4a indicates a strong correlation between /<@
75?4  and /<A

75?4. We found no such 

clear correlation between /<B
75?4  and either /<@

75?4 or /<A
75?4  (Fig. S11).  

These direct growth samples were synthesized at different growth temperatures ranging from 1600 to 

1740°C (see table1). Samples DG2 (light yellow open circles) and DG3 (black open circles), synthesized 

at different temperatures, present similar /<@
75?4  and /<A

75?4. Moreover, the two terraces of DG1 form 

extremely separated clouds in figure 4a although they pertain to the same sample area. Hence, the growth 

temperature cannot be the direct cause of the inhomogeneity of our BL Raman signature. 

 

Samples name DG1 DG2 DG3 DG4 DG5 

Temperature growth (°C) 1740 1700 1650 1640 1600 

Dwell (s) 10 300 300 300 300 

Ramp (°C/s) 0.5 0.33 0.33 0.33 0.33 

 Table1: BL0 samples growth temperature (no peeling). 

 

In the literature, a wide range of spectra have been reported for the BL from very disordered-like [28–

30,39] to more ordered-like [20,31,34,40,41] as in the present work.  

 

Figure 4: (a) Relationship between /<@
75?4  and /<A

75?4$ of BL0 samples synthesized at temperature 

between 1600 and 1740°C. (b) Individual Raman spectra of selected BL0 points (BL signal without any 

2D band) for different samples with growth temperature ranging from 1600 to 1740°C with a 10°C step. 
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Ordered-like BL can be viewed as a graphene layer sharing some sp3 bonds with the substrate. This 

might be why our buffer spectra share some similarities with sp3 functionalized graphene where modes 

localized nearby the sp3 defects have been identified [42]. They found modes attributed to sp3 atoms 

vibration in the same spectral range as our R1 region. Others modes in the 1300-1600 cm-1 range could be 

sp2 chains vibrations around the sp3 atoms, similar to their calculated CB-CC and CC-CD modes in [42]. 

But more theoretical investigations are required to check whether that applies to the BL. 

To the best of our knowledge, the only few Raman analysis with extensive statistics were obtained on 

disordered-like BL [28,29]. Usually, only one or few spectra are presented in the literature. The 

progressive evolution from disordered-like to more ordered-like Raman spectra with increasing 

temperature has been reported by Kruskopf et al. [32]. Their carbon source was a polymer layer deposited 

on SiC prior to growth rather than SiC sublimation. Our results are thus hardly comparable. The 

temperature effect has also been considered by Conrad et al. [43]. These authors report that their B0, 

equivalent to R2 in our work (middle peak), reaches “a maximum at a growth temperature of 1414°C” 

[43].  

To check this statement, we have synthesized BL0 samples varying the growth temperature from 1600 

to 1740°C with a 10°C step (with fixed dwell time at 300 s and ramp at 0.33°C/s). The corresponding 

individual spectra are presented in figure 4b and show very similar lineshapes. This is at odd with the 

observation of Conrad et al. [43] that as the growth temperature is increased the Raman peak around 

1490 cm-1 “initially increases and then appears suppressed once monolayer begins to form”. In our case, 

this peak never disappears although the spectra in figure 4b and figure S11 span the whole BL0 growth 

range. Indeed, at 1600°C, it is difficult to find BL0 areas, as the sample is mostly bare SiC. At 1740°C, it 

is difficult to find BL0 areas, as the sample is almost fully covered with graphene. We have noted some 

imperfections in the subtraction method used in Ref. [43] as indicated by negative value of Raman 

intensity around the wavenumber of 1500 cm-1 in the presented spectra which might explain part of this 

discrepancy. More likely and given the large variations within a very same sample that we have 

highlighted above, it is insufficient to use single spectra to capture the characteristics of a sample. We can 

thus not clearly state at this stage whether the results presented in Ref. [43] are truly different from ours 

or not.  

To summarize, we did not find any correlation between temperature and /<@
75?4, /<B

75?4 or /<A
75?4. The 

inhomogeneity of the BL0 has thus another origin that still needs to be determined. Interestingly, Rutter et 

al. found “two energetically stable configurations for the first carbon layer, depending on the initial 

graphene-SiC distance prior to full relaxation of the atomic coordinates” [44]. More recently, Cavalluci et 
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al. have shown theoretically that several BL structures could have similar formation energies and “might 

appear in different experimental conditions or in different areas of the sample” [18]. They used a cubic 

polytype SiC in their calculations but 3C-SiC is “perfectly equivalent to 4H and 6H-SiC provided the SiC 

surface is planar” [17] and thus their results can be applied in our case (4H samples). Further work is 

needed to check whether this is indeed the explanation for the observed inhomogeneities in the BL Raman 

signature. 

3.2 Comparison between buffer layers 

In the previous section, we have shown the variability of the Raman signature of direct growth BL called 

BL0 above. Another puzzling result is the reduction of the BL overall intensity when it is covered with 

graphene as already noticed in refs [28,43]. A buffer layer covered with monolayer graphene is the second 

carbon layer to be formed. It means that BL0 (the former BL) has been converted to graphene while a new 

BL (called BL1) is formed underneath. There is no reason to assume a priori the very same structure for 

BL0 and BL1, it is thus worth comparing the Raman signature of these two BLs. To enable such a 

comparison, we use a peeling procedure to remove graphene from the top of BL1 and achieve uncovered 

BL1 (u-BL1) samples. The results of the graphene peeling procedure are described hereafter in section 

3.2.1. We focus on the comparison between the BL0 and u-BL1 Raman signatures, in section 3.2.2. The 

influence of graphene on top of BL1 on the BL Raman signature will be discussed in the last section 3.2.3. 

3.2.1 Graphene peeling 

Figure 5a shows the Raman map (975 spectra) of the 2D-peak integrated intensity (denoted as A2D map) 

of a studied sample before the peeling experiment. The well-defined G-peak and 2D-peak are consistently 

detected in all the spectra, signifying a full coverage of the sample by graphene or few layer graphene. 

Besides, we found some broad features between 1200 and 1800 cm-1 close to the G-peak region which 

could be identified as BL1 signature [6,28,31,32]. Two distinct areas can be identified in this A2D map: 

green zones and yellow ribbons. We estimate the number of graphene layers from the corresponding 

/1
75?4 ratio [6,38]. For spectra in green areas, the /1

75?4 ratio ranges from 0.025 to 0.044 (402 spectra) in 

a Gaussian distribution centered at 0.033. This value indicates that most of the spectra in green areas could 

be attributed to monolayer graphene (1LG). On the other hand, the spectra in yellow areas possess an 

/1
75?4 ratio ranging from 0.044 to 0.063, close to the expected value for 2LG (0.06). These 2LG stripes 

are localized at the step edges as commonly observed in EG due to the step-flow growth mode [4,45,46]. 

The average spectra of these two types of areas are presented in figure 5b as green and yellow spectra, 

respectively.  
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Figure 5c is the A2D map (1305 spectra) of this sample after the graphene peeling experiment. We 

emphasize that this Raman map was recorded at the same place as the one in figure 5a. The intersection 

area is outlined by the dashed white rectangle in each map. In figure 5d, we average all spectra in the 

green/yellow areas (corresponding to about A2D > 2800 counts.s-1.cm-1) where we observe G-, 2D- peaks 

and broad features between 1200 cm-1 and 1800 cm-1, indicating the presence of graphene and interfacial 

c-BL1. We observe that the 2D signal dropped to quasi-zero value (A2D < 150 counts.s-1.cm-1, navy-blue 

areas) in some areas. The average spectrum of all these areas where A2D is lower than 150 counts. s-1.cm-

1 (see supplement part C for the detailed justification for this criteria) is shown as the navy-blue curve in 

figure 5d. Thus, comparing these two A2D maps shown in figures 5a and 5c, the graphene flakes have 

 

Figure 5: Raman analysis of a sample on which we have performed a graphene peeling. Two Raman A2D 

maps (a) before and (c) after the graphene peeling (in counts.s-1.cm-1). The dashed white rectangles mark 

the common area of these two maps. Different representative domains have been indicated as BL, 1LG, 

2LG and EG. Figures (b) and (d) show the average spectrum of each domain. The scanning steps of both 

x and y directions are 0.25 "μm" 
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probably been mechanically removed by the graphene peeling experiment, leaving in the previously 

identified areas the uncovered BL1 on the SiC surface. Meanwhile, we ignore all the spectra with A2D 

between 150 and 2800 counts.s-1.cm-1, considering they could originate from a mixture of BL and EG. As 

expected, the well-defined G-peak and 2D-peak are absent in the navy-blue average spectrum but several 

intense and broad bands in the spectral region of 1200 – 1800 cm-1 have been revealed. Besides, a few 

low-intensity bumps extending from 2600 cm-1 to 3000 cm-1 are visible. Furthermore, this spectrum shares 

a similar lineshape with BL0 spectra, for instance in figures 3b and 4b. Moreover, these spectra are 

comparable to BL Raman signature reported in litterature [6,29,31,47]. The successful graphene peeling 

exposed the now uncovered BL which will be compared to the BL0 in the next section. 

3.2.2 Comparison between noncovered buffers (BL0 and u-BL1) 

  

For the analysis of u-BL1 spectra, we use the same procedure as described is section 3.1 with the 3 

regions denoted as R1, R2 and R3. Figure 6 includes the data obtained on BL0 and u-BL1 and displays 

correlations between /<@
75?4 and /<A

75?4 (the /<B
75?4  relationship with /<@

75?4  or /<A
75?4 is less clear as seen 

in figures S11a and S11b). Pink squares are for sample u-BL1-1 achieved by graphene peeling via Ni film 

deposition method. The other squares correspond to maps at different areas of the sample u-BL1-2, 

obtained by epoxy-based resin film deposition method. The main observation made out of this comparison 

is that /<@
75?4 and /<A

75?4 display a wider variation in these u-BL samples compared to each BL0 areas 

(open circles). This variation occurs even in a single terrace such as for the olive-colored squares collected 

 

Figure 6: Correlation between /<@
75?4 and /<A

75?4 as figure 4a (BL0, open circles) with the addition of 

uncovered BL1 data (full squares) on different areas of two samples, u-BL1-1 and u-BL1-2. 
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on a 3CD × 3CD area of a single terrace. In other words, the data collected from a single u-BL1 terrace 

show a larger distribution than one collected on any BL0 single terrace analyzed so far. 

3.2.3 Comparison between buffer layer under graphene (c-BL1) and noncovered buffer layers (BL0 and u-

BL1) 

In the previous part, we showed that u-BL1 single terrace data are more scattered than on BL0. The 

question to address is thus if that is a property of the second grown BL (BL1). Because of the 

inhomogeneity of the BL described before, we need to compare data before and after graphene peeling 

acquired on the exact same area. Two superimposed Raman A2D maps of sample surface before and after 

the graphene peeling are shown in figure 7a and b, respectively. Based on the previous analyses (section 

3.2.1), we identify the green areas in map (a) as c-BL1 and navy-blue areas in map (b) as u-BL1. The 

position of the after-peeling map has been unambiguously matched to the before-peeling map thanks to 

prominent features such as step edges and remaining graphene patches. To give spectral details with high 

signal to noise ratio, we average Raman spectra over a small area, checking that the average spectrum is 

representative of all the individual spectra of this area. Hence, the before and after spectra are genuine and 

not altered by any inhomogeneity. For instance, the average spectra of figure 7c come from the area 

outlined by a white solid square where graphene was successfully peeled off (9 spectra). The same was 

reproduced on other areas of the same sample and on 4 other samples with similar results.  

To extract the BL1 contribution in the frequency region between 1200 cm-1 and 1800 cm-1, we subtracted 

the G peak contribution in the EG (with BL underneath) spectrum. The residual is denoted as “covered 

BL1 minus G” in figure 7c.  Figure 7d is a zoom on the 1100 cm-1 1800 cm-1 range. The following features 

have been consistently observed on all the studied samples (see supplement, Fig. S15). 

i) In the literature [20,28], it was observed that the “covered BL1 minus G” signal is smaller than BL0. 

We observe the same trend in overall intensity (see supplement Fig. S13). The largest value of total 

integrated intensity of “covered BL1 minus G” of all the samples in this study is still smaller than the 

smallest value observed among the uncovered BL1. Several explanations might be envisaged.  



 

14 

 

The absorption of light by graphene can be estimated and is by far insufficient to explain the attenuation 

of the signal. A simple difference in the quantity of matter (buffer coverage, for example) without 

structural modifications can also be ruled out because of the strong changes observed in the spectra 

lineshape.  

 

Figure 7: Superimposed Raman A2D maps (a) before and (b) after graphene peeling. (c) Average Raman 

spectra of EG (green) and u-BL1 (navy-blue), respectively. The orange spectrum results from subtracting 

a monolayer G-peak from the EG spectrum. All these spectra are averaged over the white square area in 

(a) and (b). (d) Zoom on the 1100-1800 cm-1 range. The vertical arrows mark the two fine peaks at about 

1233 and 1363 cm-1. The horizontal arrow indicates the spectral upshift after graphene peeling. (e) 

Comparison between the EG spectrum and spectra of the graphene layer that was transferred on epoxy-

based resin during the process described in 3.2.a. The spectra were collected from several well separated 

points at locations in and out of the white square common to (a) and (b) maps. More details are given in 

supplement part F (Fig. S14). 
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As another explanation, the topmost SiC layer might be partially converted to a new BL. This partial 

conversion would be a possible explanation for the Si depletion observed by Emery et al. [48] with only 

25% of C atoms sp3 bonded to Si while other authors [11,13] observed the 33% expected for the standard 

6!3 × 6!3"30° reconstruction. In our case, the conversion would have to be more advanced in the BL0 

samples (higher overall intensity) than in the BL1 samples. We propose to peel the top layer graphene (as 

described in section 3.2.1). The signal after peeling should be close to “covered BL1 minus G”.  

The results are surprising; the integrated intensity of the BL1 contribution considerably increases after the 

peeling of the monolayer graphene, as visible in figure 7d and confirmed with more statistics in figures 

S12 and S13. The layers underneath the BL1 are exactly the same in both cases, since we were able to 

compare the same part of the same sample before and after peeling. Hence, this experiment clearly rules 

out the partial conversion hypothesis. 

Another possible origin for the difference between BL0 (the first grown BL) and “covered BL1 minus G” 

(the second grown BL) could be a structural difference [43]. For instance, Schumann et al. [30] measured 

different lattice parameters for these two layers. Peeling is not expected to break the C-Si sp3 bonds 

between buffer and SiC because van der Waals coupling between buffer and graphene is much weaker 

than covalent bonds. But several structures could have similar energies. Then, it is not impossible that the 

former BL0 (that will become graphene) stabilized the BL1 growth underneath in a particular structure and 

that the peeling process induced structural changes by rearranging the sp3 bonding. That would perhaps 

explain the large scatter in R1, R2 and R3 observed after peeling (Fig. 6 and Fig. S12). But it is not clear 

whether the mechanical energy developed during the peeling process is enough to overcome the relevant 

potential barrier. 

The intensity change is more probably due to the coupling with graphene (when still covered) as already 

mentioned in a former work [28]. The exact mechanism is still to be found. It could be related to the 

corrugation of BL and graphene [16] that has been shown experimentally to be higher for BL0 than for 

1LG surface [49] and might be partly attributed to smoother BL1 [30] as confirmed by Conrad et al. [43]. 

ii) After the graphene removal, the BL1 signal onset upshifts by 8 cm-1 as indicated by the horizontal 

arrow in figure 7d. It would be tempting to attribute this shift to a strain relaxation. Indeed the graphene 

is compressively strained as usual on the Si-face of SiC [30,50]. Reciprocally, graphene would exert an 

expansive stress on the buffer. Further experiments detailed in supplement part G indicate that on the 

contrary, the graphene strain state plays no role in the buffer shift (Fig. S15 et S16). Hence, this shift is 

perhaps not due to a simple mechanical coupling between graphene and buffer. This seems reasonable 
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since the van der Waals forces are weaker than the sp3 bonding between buffer and SiC. To evaluate 

potential screening or charge transfer effect, DFT calculations would be required. 

iii) Two fine peaks at about 1235 cm-1 and 1360 cm-1 are observed in the “covered BL1 minus G” 

spectra, indicated by vertical arrows in figure 7d. These two peaks are present on covered buffer (c-BL1) 

spectra but absent in both noncovered BL1 (Fig. 5b and Fig. 7d) and BL0 (Fig. 3b, Fig. 5b and Fig. 7d). 

They are also absent on the graphene that has been peeled by the resin (Fig. 7e). It should be stressed that, 

as shown in figure 7d, the peaks are absent in spectra coming precisely from the graphene layer that was 

probed in the figure 7a map where these peaks were initially present. Hence, graphene and buffer have to 

be in contact for these peaks to appear. 

Kruskopf et al. [32] have observed similar peaks at about 1235 cm-1 and 1365 cm-1 and they attributed 

them to the vibrational density of states of the BL and the D-related peak, respectively, following Fromm 

et al. [51]. Rejhon et al. attributed the peak observed at 1237 cm-1 to “the LO/LA phonon branches at the 

Γ point” of the BL [41].  

Since these peaks disappeared after peeling, they are not a pure property of the BL alone. Other 

explanations are possible. The low frequency peak could arise from a superlattice effect [52,53]. The peak 

near 1365 cm-1 could be similar to the D-like peak described by Gupta et al. [54]. In both cases, going 

further would require an extensive investigation with, for example, different excitation wavelengths. 

4. Summary 

We carried out an extensive study of the Raman signature of different kind of buffer layers (BLs), 

namely: BL0 the first grown (direct growth) buffer layer; c-BL1 the second grown buffer layer (BL1) which 

is covered by graphene and finally u-BL1 uncovered BL1, which is obtained by post-growth mechanical 

removal of the covering graphene. Special care was taken in the data acquisition, processing and analysis 

especially regarding the sample repositioning under the microscopes, the mandatory subtraction of the 

bare SiC substrate Raman spectrum and intensities normalization. 

The whole BL growth temperature range has been investigated. After thorough cleaning of the furnace, 

only ordered-like BL (3 main peaks) was formed. Hence disordered-like BL (2 broad peaks) probably 

require another carbon source [32]. 

The BL0 Raman features in the 1200-1700 cm-1 range present important intensity variations not only 

between different samples but even on different SiC terraces of a very same sample. Such changes are 

shown not to be correlated to the sample growth temperature contrary to what has been previously 

suggested [43]. Moreover, a clear correlation is found between the integrated intensities in the 1260-
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1460 cm-1 and 1550-1710 cm-1 regions. These results could be the signature of the coexistence of different 

BL structures which can have close formation energies as evidenced by the theoretical work of Cavalluci 

et al. [18], but the structure and Raman signature relationship still remains to be established. 

The graphene peeling technique developed and applied in this work allows the comparison of the two 

kinds of buffers without graphene on top: BL0 and u-BL1. We have shown that both Raman signatures 

share similar properties although the u-BL1 samples exhibit larger distributions in terms of Raman 

intensities. 

Thanks to the graphene peeling technique and the sample repositioning method, we compare the Raman 

fingerprint of the exact same buffer layer with and without graphene above (c-BL1 vs. u-BL1). The results 

revealed that the buffer layer contribution would increase after the graphene removal by showing a higher 

Raman integrated intensity. We believe this is a direct evidence of coupling between graphene and buffer 

layer. In the meantime, the signal onset at about 1600 cm-1 upshifts upon graphene coverage. These 

evolutions could be plausibly related to changes in the buffer layer, yet unexplained; however a simple 

strain effect between graphene and buffer layer has been ruled out.. Furthermore, two fine peaks situated 

at 1235 and 1360 cm-1 are present in epitaxial monolayer spectrum while absent in that of buffer layer and 

transferred graphene, which might be interface coupling related. 

All our findings point to a coupling between graphene and buffer layer. The origin of this coupling is 

still to be determined. We hope that these results will stimulate theoretical investigations that seem 

mandatory to gain further insight. 
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Part A: subtraction of SiC background 

 

Since the spectral regions relevant for graphene also present second order SiC Raman signature 

and others contributions [1], the subtraction of SiC background is necessary before further 

analysis of graphene as well as buffer Raman response. In the literature, methods to separate 

the surface signal from the SiC background can be very different. Several buffer studies [2–5] 

only mentioned a simple SiC subtraction . In some cases, we observed significant negative 

values [6,7] or residue of SiC signature [8] that could be due to difficulties in the extraction 

method. On the other side, a more involved procedure has been proposed by the Georgia Tech 

research group [9] using a non-negative matrix factorization method, in which the acquired 

spectra are decomposed into a basis of predefined rank. This either requires a time-consuming 

z-scan (Fig. 1 in Ref.Kunc) or presents some ambiguities in the basis determination (Fig. 2f and 

related discussion in Ref.Kunc). 

The data analyzed in the main paper could be sensitive to an inadequate extraction procedure. 

Hence, in this supplement we are going to describe precisely our fast procedure and show its 

robustness.  
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1. Correction procedure:  

This process [10] has been automatized by an home-made Labview based software. In this 

supplement part, we present our procedure step by step and justify some hypotheses that are 

made.  

 

Figure S1 (color online): As-obtained Raman spectra of SiC (black), of buffer on SiC (red) 

and of graphene on buffer on SiC (green). 

 

In figure S1 we compare as-obtained Raman spectra: bare SiC (black), buffer on SiC (red) and 

graphene on buffer on SiC (green). All spectra are dominated by the second order of SiC, below 

2000 cm-1. There are small but significant differences related to the carbon overlayers (buffer 

and graphene). The procedure described below greatly enhances the robustness of the extraction 

of the signal coming from these overlayers, with respect to a mere subtraction.  
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Step 1: Baseline subtraction  

  

Figure S2 (color online): Baseline subtraction procedure. (a) As-obtained spectrum (black), 

baseline (red) and handler regions used to define the baseline (between blue dashed lines). (b) 

Baseline subtraction result (green). 

We start with a standard baseline subtraction. This step will be described with SiC as an 

example, but the same procedure will be applied to all spectra in this paper. The baseline is a 

line determined by the average signal in two regions (between the blue dashed lines plotted in 

figure S2a) where the overlayers signal is negligible in our case. Typical regions used are 2010 

– 2040 cm-1 and 3265 – 3290 cm-1. The result of the baseline subtraction procedure is presented 

in figure S2b. 

Step 2: SiC renormalization range 

 

Figure S3 (color online): Highlighted renormalization range (orange) on the baseline 

subtraction procedure result (black) 

(a) (b) 
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We need to subtract the SiC background from the studied spectra in order to isolate the signal 

coming from the surface. The choice of the relevant SiC reference will be discussed in detail in 

the third part of this part A. Despite the high stability of our set-up, the SiC signal is so strong 

that the slightest mismatch in focus or in wavelength calibration of the spectrometer might 

significantly alter the extracted result. Hence, it is not possible to subtract directly the SiC 

reference spectrum. Instead, to obtain reliable results, a more involved procedure is necessary 

that will be described below.  

Apart from the baseline subtraction, the current spectrum stays pristine. The SiC reference is 

adjusted to match each spectrum individually. 

Two parameters need to be determined for each spectrum: the spectral shift (drift in laser 

wavelength, spectrometer wavelength calibration, beam pointing, etc) and overall intensity 

ratio (focus, laser power, etc) between each spectrum and the reference. Both are determined 

at once by fit. The fitting function is the reference SiC spectrum shifted by linear interpolation 

and multiplied by a “renormalization ratio”. The fit is performed over a frequency region 

(outlined in orange in Fig. S3) where only the SiC signature is present. Then, the same function 

is applied to the whole range of the baseline subtracted SiC spectrum, using the fit results as 

parameters. The result is subtracted from the spectrum. 

We adjust the renormalization range to achieve a good stability and check the robustness of this 

fitting procedure for all the spectra of the map.  
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Step 3: Correction outcome 

 

Figure S4 (color online): Correction outcome for SiC (black), buffer (red) and graphene 

(green) samples. The blue vertical lines mark the ends of the renormalization range (in orange 

in figure S3). 

The final corrected spectrum is the subtraction of the renormalized SiC reference from the 

spectrum. The structurelessness of a zoom on the renormalization range (Fig. S4) confirms 

that in this range there is no signal from additional overlayers.  

 

Step 4: Corrected spectra 
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Figure S5 (color online): Final results for (a) SiC, (b) buffer and (c) graphene on buffer. Each 

panel displays three spectra: as-obtained minus baseline (red), renormalized SiC reference 

(black) and corrected spectrum (green). 

In Figure S5, we show the steps of the correction procedure, on representative SiC, buffer and 

graphene spectra. The spectra after baseline subtraction (step 1) and the renormalized SiC 

reference (step 2) are shown in red and black respectively. In Figure S5 we apply the same 

procedure for all panels. In Figure S5a, a SiC spectrum is corrected using another SiC as a 

reference. The corrected signal obtained is flat and with fluctuations that are small with respect 

to the corrected signal of buffer (Fig. S5b) and graphene/buffer (Fig. S5c). 

This indicates the validity of SiC reference selection and the whole correction procedure. 
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2. Set-up stability 

The SiC substrate has a high refractive index (~2.7 [11]) that kills the Raman efficiency of 

overlayers such as graphene. To compensate that, we built an optimized high throughput system. 

Nevertheless, in order to get enough statistics we commonly acquire maps ~1000 points that 

last half a day. Hence, it is necessary to ensure the stability of the setup. As a demonstration, 

we measured the same pristine SiC sample at times t0, t0 + 24 h and t0 + 48 h. We apply the 

correction procedure described above to the t0 + 24 h and t0 + 48 h spectra, using the t0 spectrum 

as a reference. Results of this procedure are shown in black and in red respectively in Fig S6. 

These curves show both the robustness of our correction procedure and the long term stability 

of our set-up. This robustness is especially important for the investigations presented in this 

paper because we are going to the next order, analyzing variations of the corrected spectra 

(smaller than the corrected spectra themselves). 

 

Fig S6: Long term stability - Result of the correction procedure after 24 (black) and 48 (red) 

hours (* = spikes) 
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3. Any better SiC reference? 

We first looked at the impact of the choice of SiC reference on the correction procedure using 

three substrates of semi-insulating research grade 4H-SiC from the same vendor (Tankeblue) 

mostly used in our study. The substrates serial numbers are W34s0R-CPE, TK-10112419 and 

TK-10112420 and will be called respectively A, B and C in the following.  

Figure S7 compares the result of our procedure on different substrates (Fig. S7a), and on 

different points of each substrate (Fig. S7b). We first apply the procedure to a spectrum from 

sample A using a spectrum of sample B as a reference so-called “A (with ref B)”. In figure S7a, 

the residues of the correction procedure appear clearly between 1000 and 1500 cm-1. The 

differences are significantly larger than both the noise and experiment to experiment variations 

as emphasized in figure S7b. As a conclusion, we will always use as a reference a piece of the 

same pristine SiC substrate coming from the same wafer as the one used in the growth process. 

  

 

Figure S7: Reference matters – Comparison of our correction procedure on (a) different 

substrates, and on (b) different points of each substrate. A, B and C are three 4H-SiC with the 

same specifications (details in the text). [A (with ref B)] means “apply the procedure to a 

spectrum from substrate A using a spectrum of substrate B as a reference”. [A’] and [A] are two 

points on the A substrate. Note: Since the procedure is not symmetrical [A (with ref B)] is not 

exactly the opposite of [B (with ref A)]. For sake of clarity, we did not represent all possibilities 

for the second panel since they give results so similar that there would be too much overlap.  

 

To complete this, we compared the precursor with a pristine SiC substrate (substrate C in Figure 

S7) and one that was heated to 1600°C (sample D). In these conditions, the buffer growth is 

incomplete and there are patches of bare SiC, much larger than the spot size. The spectra D, D’ 

(a) (b) 
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and D’’ come from some of these bare SiC areas. There is no noticeable effect of the 

temperature on the bulk SiC signal (Fig. S8). 

Figure S8: Comparison of correction results of a pristine SiC substrate [C] (black curve) and 

another piece of the same SiC substrate that was heated at 1600°C [D] (red, green and blue 

curves). 

 

Following these two results, we conclude that to carry out the correction procedure it is essential 

to collect the reference spectrum from the same substrate as the one used in the growth without 

necessarily a heat treatment. 
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Part B: Optical image of DG1 zoneA 

Figure S9 (color online): (a) Optical image of DG1 zoneA with differential interference 

contrast (DIC) to enhance the step edges. The red dashed square indicates the Raman 2D map 

zone. (b) Superimposition of the optical image and the 2D Raman map (see figure 3a in the 

main paper) of the DG1 sample zoneA (8𝜇𝑚 × 8𝜇𝑚). 
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Part C: A2D < 150 counts s-1 cm-1  

In this work, we use the A2D as an indicator to distinguish the epitaxial graphene (EG) with BL 

zones in Raman maps. In this paragraph, we explain the choice of A2D < 150 counts s-1 cm-1 to 

identify pure BL areas. This criterion is validated by combining AFM and Raman experiments 

(Fig. S10). Based on the analysis of the Raman spectrum (Fig. S10a), we attributed yellow 

stripes to EG and navy-blue areas to BL. Figure S10b illustrates the corresponding AFM phase 

image collected from exact the same location as the Raman map. AFM features match EG 

(yellow stripes in Raman map) and BL (navy-blue areas in Raman map). In the literature, the 

AFM phase images were used to distinguish between BL and graphene domains [12–14] which 

is consistent with our observation. We take advantage of the resolution of AFM images to check 

whether the 2D area criterion indeed allows to identify graphene-free areas (with no trace of 

nanometer sized graphene patches). The purple squares in figure S10b highlighted Raman 

spectra which possess a A2D lower than 300 counts s-1 cm-1. The phase value in these zones is 

homogeneous without any obvious contrast. To be conservative and to rule out the possibility 

of existing small graphene patches in our selected BL areas, we usually set a lower threshold 

of 150 counts cm-1 s-1. The same criterion will also be applied to identify graphene-free areas 

on direct growth buffer layer (BL0).  

 

Figure S10: Combined Raman and AFM (phase mode) analyses of one sample obtained by 

graphene peeling. (a) Raman A2D map and (b) corresponding AFM phase image of the exact 

same area. Characteristic domains such as EG and BL are indicated in the images. The purple 

areas overlaid in (b) correspond to A2D < 300 counts s-1 cm-1.  
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Part D: 𝑨𝑹𝟐norm 

 

Figure S11 (color online):  𝐴𝑅2norm  relationship with 𝐴𝑅1norm  (a) or 𝐴𝑅3norm  (b) for direct growth 

buffer layer (BL0) and uncovered buffer layer (u-BL1). 
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Part E: Influence of the peeling process 

Figure S12 (color online): Relationship between 𝐴𝑅1norm and 𝐴𝑅3normfor BL before (c-BL1 minus 

G described in the figure 7 caption, open squares) and after peeling process (u-BL1, full 

squares). Squares with the same color correspond to the same sample area. 

Before the peeling process (open squares), 𝐴𝑅1norm and 𝐴𝑅3norm display a small variation as in the 

case of BL0 (see figure 6 in the main manuscript). This variation is larger after the peeling (full 

squares). 

The increase in 𝐴𝑅3norm (from open to full squares) after peeling is discussed in section 3.2.c of 

the article core.  
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Figure S13 (color online): Raman spectra of u-BL1 (navy-blue) and c-BL1 minus G (orange, 

resulting from subtraction of a monolayer G-peak from the EG spectrum). All these spectra 

are averages over n spectra indicated in each figure. 

 

  



15 

 

Part F: Transferred graphene analysis 
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Figure S14 (color online): (a) Raman spectra of as-obtained graphene on M610 resin (red), 

M610 resin (black) and corrected spectrum obtained with the procedure described in part A 

of this supplement using a polynomial baseline (green). (b) Corrected spectra of transferred 

graphene (TG) thanks to resin peeling method in well separated points in two areas of the 

same sample (points p1 to p5 and points p6 to p8). The spectra have been shifted by 

250 counts/s steps for clarity. The gray dashed lines indicated the wavenumber of the two 

peaks discussed in section 3.2.c(iii). The pink dashed rectangle indicates the spectral range 

of the next panel. (c) Same spectra normalized to the same integrated intensity of the G peak 

as before the transfer of monolayer graphene. The c-BL1 minus G and these normalized TG 

intensities are comparable - Raman enhancement factors that depend on the substrate are 

factored out. 

The procedure to localize precisely area and the negative optical image (figure 4.4 p119) of the 

studied zone of the figure S14 is accessible in T. Wang PhD thesis.[15] and illustrated in the 

figure 2 in the article core. 
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Part G: Additional data for the shift discussion in section 3.2.c main paper 

Figure S15 (color online): Average Raman spectra of 1LG on buffer before (green) and after 

(pink) peeling process. Before the peeling, the 1LG almost fully covers the sample (with 

some patches of 2LG that were excluded from the average). After the peeling, only residual 

1LG that were not peeled off were included in the average. Areas where the peeling was 

successful were averaged as “buffer after” (blue). (a) Ni peeling. (b-e) M-610 resin peeling, 

the last two corresponding to different zones of the same sample.  

The BL signal onset is at much higher frequency for the “1LG/buffer after” (u-BL1) than for 

“1LG/buffer before” (c-BL1). This difference could not be attributed to strain effect, since the 



18 

 

onset frequency is almost the same for c-BL1 with 1LG in very different strain states (Fig. S16). 

The slight offset on the 1LG/buffer spectrum before peeling in figure S15a is an identified 

artefact for this specific measurement. 

 

Figure S16 (color online): Histograms of the 2D band position for the same samples and 

areas as in figure S15, with the same color code. The dark green and violet lines are 

Gaussian fit to the histograms (x0 is the position, w is the FWHM). 
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The 2D band position is very sensitive to the graphene strain state[16]. After peeling, the 

graphene can be either more (e.g. Fig. S16b) or less (e.g. Fig. S16a) strained than before peeling. 

This is confirmed by the G band shift in the same directions observed in the figure S15.  

As a side note the small peak around 1360 cm-1 seems to follow the same shift direction but this 

point needs further investigations to be confirmed. 
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