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Graphical abstract 

 

 

 

Highlights 

 

 Microparticle-depleted blood plasma failed to coagulate in plastic cups 

 Polyethylene-carboxylate L-PPE:O nanocoatings were created by glow-discharge plasma 

 Hydroxyapatite particles, glass microbeads, and L-PPE:O coatings had anionic surfaces 

 Anionic surfaces induced burst coagulation of microparticle-depleted plasma via FXII 

 Microparticles and anionic surfaces can activate thrombin without platelet activation 

 

 

 

Abstract   

ACCEPTED M
ANUSCRIP

T



3 
 

Biomaterials are frequently evaluated for pro-coagulant activity but usually in the presence of 

microparticles (MPs), cell-derived vesicles in blood plasma whose phospholipid surfaces allow 

coagulation factors to set up as functional assemblies. We tested the hypothesis that synthetic 

anionic surfaces can catalyze burst thrombin activation in human blood plasma in the absence of 

MPs. In a thromboelastography (TEG) assay with plastic sample cups and pins, recalcified human 

citrated platelet-poor plasma spontaneously burst-coagulated but with an unpredictable clotting 

time whereas plasma depleted of MPs by ultracentrifugation failed to coagulate. Coagulation of 

MP-depleted plasma was restored in a dose-dependent manner by glass microbeads, 

hydroxyapatite nanoparticles (HA NPs), and carboxylic acid-containing anionic nanocoatings  of 

TEG cups and pins (coated by glow-discharge plasma-polymerized ethylene containing oxygen, 

L-PPE:O with 4.4 and 6.8 atomic % [COOH]). Glass beads lost their pro-coagulant activity in MP-

depleted plasma after their surfaces were nanocoated with plasma-polymerized hexamethyl 

disiloxane (PP-HMDSO). In FXII-depleted MP-depleted plasma, glass microbeads failed to 

induce coagulation, however, FXIa was sufficient to induce coagulation in a dose-dependent 

manner, with no effect of glass beads. These data suggest that anionic surfaces of crystalline, 

organic, and amorphous solid synthetic materials catalyze explosive thrombin generation in MP-

depleted plasma by activating the FXII-dependent intrinsic contact pathway. The data also show 

that microparticles are pro-coagulant surfaces whose activity has been largely overlooked in many 

coagulation studies to-date. These results suggest a possible mechanism by which anionic 

biomaterial surfaces induce bone healing by contact osteogenesis, through fibrin clot formation in 

the absence of platelet activation.   

 

 

Keywords: blood coagulation; hydroxyapatite; microparticles; thromboelastography; plasma enhanced 

chemical vapor deposition (PECVD); thrombin; FXII; FXIa; contact pathway, contact osteogenesis 
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Biomaterial-induced blood coagulation can lead to either therapeutic or adverse effects, 

therefore, the mechanisms governing biomaterial-induced coagulation should be thoroughly 

understood. Thromboelastography (TEG) is an in vitro assay used to study the effect of 

biomaterials on blood coagulation, and typically uses unmodified whole blood, citrated whole 

blood, or citrated blood plasma [1-5]. In the TEG assay, a liquid blood sample is deposited in a 

heated plastic cup and a plastic pin attached to a torsion wire is immersed in the sample. The cup 

oscillates at a fixed angle and when fibrin strands start to connect the cup and the pin, the torsion 

wire begins to rotate with the cup giving rise to a symmetric trace with an amplitude that is 

proportional to the viscoelastic clot tensile strength [6] (Fig 1). Thrombin activation dynamically 

parallels the TEG trace amplitude (parameter A) [7], meaning that explosive thrombin generation 

can be indirectly demonstrated by a sigmoidal curve which is usually accompanied by a sharp 

angle (≥30°) in the TEG trace (Fig. 1). Biomaterials and clotting factors introduced in the TEG 

assay can alter clotting time, , and TEG trace amplitude, with corresponding alterations in 

thrombin activation kinetics [2].  

Citrated platelet-poor plasma (PPP), like citrated whole blood, can be recalcified in vitro 

and will spontaneously burst coagulate in the TEG assay but with a variable clot initiation time 

[5]. PPP coagulates faster with more precise kinetics when the conventional plastic Cyrolite® TEG 

cup and pin are coated with anionic carboxylic acid (COOH)-rich nanolayers termed L-PPE:O 

(low-pressure plasma polymerized ethylene containing oxygen); these nanolayers consist of 

oxidized polyethylene and are generated by glow-discharge plasma-enhanced chemical vapor 

deposition (PECVD) [5]. It is important to distinguish between blood plasma and gaseous glow-

discharge plasma and in this text; hereafter, we shall mostly be referring to the former. Other 

PECVD nanolayers, including hydrophilic amine-containing (L-PPE:N), “glass-like” (PP-SiO2) 
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and hydrophobic (PP-HMDSO), failed to accelerate PPP coagulation [5]. The mechanisms behind 

the pro-coagulant effect of L-PPE:O remain unclear. The purpose of this study was therefore to 

elucidate the mechanisms of anionic surface-induced PPP coagulation in the TEG assay. Our long-

term goal is to develop a novel functional bioassay for testing the potential for different 

biomaterials to influence burst thrombin activation in citrated plasma samples, using pooled 

qualified blood plasma as a standard, and plasma from distinct individuals for precision medicine.        

Citrated plasma is cleared of blood cells and most platelets by low-speed centrifugation but 

it still contains microparticles (MPs) and trace platelets (reviewed in [8, 9]). MPs (also called 

“platelet dust”, exosomes, extracellular vesicles) are phospholipid vesicles that are shed into the 

blood circulation from a variety of cell types including platelets, erythrocytes, leukocytes, and 

endothelial cells [10]. Ultracentrifugation can be used to collect MPs, and MPs from normal 

citrated plasma have modest pro-coagulant activity while MPs collected from individuals with 

pro-inflammatory states (sepsis, cardiac by-pass, kidney disease, heparin-induced 

thrombocytopenia) have relatively higher pro-coagulant activity [11-16]. As MPs are derived from 

multiple cell sources, it is important to note that MPs arising from different cell sources initiate 

and propagate coagulation through different mechanisms. Platelet-derived MPs (CD61+) display 

variable phosphatidyl serine (PS) content on their outer surface [13, 17]. PS is normally located 

on the inner cell membrane and upon platelet activation a flippase/scramblase transfers PS to the 

external membrane leaflet. PS carries a unique anionic carboxylic acid charge group that serves as 

an essential docking site that tethers and orients the calcium-binding γ-carboxyglutamic acid (gla) 

domain of key coagulation factors (FVII, FIX, FX, FII/prothrombin, Protein C), so that their active 

sites and sessile bonds are at an optimal distance from the plasma membrane (i.e., 52 to 90 Å) [18, 

19]. Granulocyte- (CD66b+) and monocyte-derived (CD14+) MPs express different levels of 

Tissue Factor (TF) [8, 13]. TF is a transmembrane co-factor that complexes with FVIIa, a gla 
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domain serine protease that when complexed with TF directly activates FIX and FX to create 

tenase and prothrombinase, respectively [20, 21]. To summarize, MPs in normal blood plasma 

have features that facilitate coagulation by contributing trace PS+ binding sites for cooperative 

assembly of tenase, prothrombinase, and prothrombin, and potentially trace TF [8, 13]. 

In order to test the hypothesis that MPs are required to initiate burst coagulate of PPP in 

the TEG assay, we used ultracentrifugation (136,000xg) to produce MP-depleted and MP-enriched 

plasma. Samples were recalcified and allowed to coagulate in the TEG assay using commercially 

supplied Cyrolite® plastic cups and pins. Our first experiments showed that PPP and PPP enriched 

2-fold for MPs spontaneously burst-coagulated, while MP-depleted plasma failed to coagulate in 

the plastic TEG cups. We then tested the hypothesis that synthetic anionic surfaces stimulate 

coagulation of PPP, and are necessary and sufficient to induce coagulation of MP-depleted plasma. 

Our results showed that MP-depleted plasma burst coagulated solely in contact with anionic 

surfaces, and that the effect was sensitive to the anion charge density. We also provide evidence 

using FXII-depleted plasma spiked with FXIa that anionic surfaces induce burst coagulation of 

MP-depleted plasma by activating the contact (FXII-dependent) pathway.  
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2. Methods 

2.1 Materials 

Plastic TEG cups and pins made of Cyrolite®, a methacrylate-based polymer, were purchased 

from Haemonetics Corporation (IN, USA) or Hemoscope (IN, USA). Other reagents included 10 

µm-diameter carboxylated CML latex beads at 4% w/v (Life Technologies, Cedarlane, ON, 

Canada, Product No. C37259, Lot No. 1071765 with 6.8x108 COOH groups per particle), 10 µm 

diameter dark red latex beads at 2% w/v (Sigma-Aldrich, Oakville, ON, Canada, Product No. 

61946), 10 µm diameter borosilicate glass beads (SPHERICEL® Hollow 10 µm Glass Spheres, 

Grade 110P8, Matweb), synthetic HA nanoparticle rods of 40 nm x 9 nm created with CTAB and 

IGEPAL (2.03 Ca/P ratio) [22], and CaCl2 (Sigma-Aldrich, Oakville, ON, Canada, Product No. 

C5670 dihydrate or C7902 anhydrous) to prepare 200 mM CaCl2 (osmolality of 490 to 510 

mOsm). The 4% w/v latex bead, CML bead, and glass microbead suspensions were generated at 

2.5 mg/mL in 200 mM CaCl2 to obtain an average 4.25±0.75 million beads per mL 200 mM CaCl2 

as verified with a Countess Automated cell counter (Invitrogen, Thermo-Fisher, Canada). HA 

nanoparticles were suspended in ddH20 at 0.25, 2.5, and 25 mg/mL and characterized for zeta 

potential in 0.01 M NaCl solution pH 7.0 in triplicate. 

2.2. PECVD thin film coatings of TEG cups and pins and glass beads 

The inner surface of the TEG cups and outer surface of the TEG pins were coated using PECVD 

to make ~200 nm thick nanocoatings with hydrophobic character (PP-HMDSO, plasma-

polymerized hexamethyldisiloxane), or hydrophilic anionic character (L-PPE:O), at distinct 

oxygen/ethylene gas flow ratios, R≡ O2/C2H4 of 0.025, 0.05, and 0.075) as previously described 

[5]. Briefly, TEG cups and pins were placed in custom aluminum holders on the lower plate 

electrode of an aluminum/steel vacuum chamber, and under low pressure (<106 Torr), the chamber 
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was filled with a flowing gas mixture of ethylene (99.5%) and 10% oxygen/90% argon gas mixture 

(for L-PPE:O), or pure HMDSO (99.7%) vapor for (PP-HMDSO) while controlling the applied 

13.56 MHz radio-frequency power (ca. 10 Watts) and operating pressure (ca 600 mTorr) to create 

the ~200 nm thick coatings. Small pieces of single-crystal silicon (c-Si) wafer were placed on the 

aluminum holders during deposition runs as test surfaces for water contact angle measurements. 

Glass beads (500 µm diameter, Zymogen, QC, Canada) were also coated as a single bead layer 

with PP-HMDSO using the same parameters, then part-way through the coating, the glass beads 

were moved one by one and the PECVD treatment repeated so that all bead surfaces were coated.  

2.3. Characterization of coatings 

X-ray photoelectron spectroscopy (XPS)  

The TEG cups and L-PPE:O-modified TEG cup surfaces were characterized by high resolution X-

ray Photoelectron Spectroscopy (HR XPS) (VG ESCALAB 3MkII instrument, using non-

monochromatic Mg K radiation) directly on the bottom of the TEG cup [5]. Functional 

concentrations were determined using Avantage v4.12 software (Thermo Electron Corp.) by 

integration of the area under specific sub-peaks following subtraction of a Shirley-type 

background. O1s was fitted with two peaks (O=C (532.4 eV) and O-C (533.9 eV) while C1s was 

fitted with 5 peaks, A, B, C (285.0, C-C, C=C; 285.7, C-COOR; 286.6 eV, C-OR; respectively), 

peak D (C=O, 287.9 eV) and E (COOR, 289.2 eV). The oxygen content of Cyrolite® and PP-

HMDSO thin films was previously reported [5]. The carboxylic acid/ester content of the L-PPE:O 

surfaces was quantified by calculating the area under the HR-XPS C1s peak at 289.2 eV (Avantage 

v4.12 software). COOR content of CML beads was determined using the same approach. Calcium 

content of borosilicate glass beads, and surface character of 500 µm glass bead surfaces before and 

after PP-HMDSO coating were also analyzed by XPS.   
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Contact angle goniometry (CAG)  

CAG measurements determine the angle between a surface and the tangent made with it by a small 

water droplet deposited on the surface. CAG using water gives a rough indicator of surface 

wettability. Note that hydrophilicity is not a precise notion, because CA depends not only on 

chemistry, but also on surface morphology (roughness). Generally, if the WCA is >90°, the solid 

surface is considered hydrophobic. CAG measurements were carried out with a dedicated 

goniometer (Ramé-Hart, Inc.) on a flat part of the TEG cup (Cyrolite®), or on a PECVD deposit 

made on a piece of c-Si wafer, and reproducibility was verified by repeating the procedure 3 times.    

2.4 Thromboelastography assays.  

Assays were carried out in three tandem TEG 5000 thromboelastograph instruments (Haemonetics 

Corporation, Niles, IL, USA), permitting the simultaneous analysis of six samples, or a single TEG 

5000 analyzer (FXII-depleted plasma assays). Citrated PPP containing 3.2% w/v citrate 

(CRYOcheck®, Catalog number: CNN-15, lot# A1104, Precision BioLogic, Dartmouth, Nova 

Scotia, Canada, confirmatory experiments with lot# A1151) collected by apheresis from consented 

healthy human donors and pooled, was characterized as containing 2.90 or 3.34 g/L fibrinogen, 

and from 92% to 118% FII, FV, FVII, VIII, FIX, FX, FXI, and FXII (according to the Certificates 

of Analysis), and platelet counts less than 1 million per mL (personal communication Stephen 

Yorke, Technical Support, Precision BioLogic). Plasma was received frozen on dry ice in 1.5 mL 

aliquots, was stored at -80ºC, and thawed at 37ºC for 5 minutes prior to use. TEG instruments were 

verified by e-tests prior to each experiment. MP-depleted plasma was generated as follows: 1 mL 

PPP was ultra-centrifuged for 30 minutes at 50,000 rpm (136,000xg) at 4°C in a fixed angle rotor 

TLA-110 (Optima Max-E Beckman Ultracentrifuge) in 1.5 mL Microfuge® polyallomer tubes 

(Beckman Product No. 357448), and 0.5 mL supernatant (MP-depleted plasma) was carefully 
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recovered avoiding any floating lipids, while MP-enriched plasma consisted of the resulting pellet 

containing MPs resuspended by vortexing in the remaining 0.5 mL PPP. TEG assays in unmodified 

and PECVD-modified TEG cups were run by depositing 20 L of 200 mM CaCl2 in the TEG cup, 

followed by 340 L of citrated platelet-poor plasma (PPP), MP-enriched, or MP-depleted plasma. 

Other assays were performed with 20 L of 200 mM CaCl2 containing 2.5 mg/mL microbeads and 

340 L plasma, or 20 L of 200 mM CaCl2, 20 L of ddH20 with or without HA NPs (0.25, 2.5 

or 25 mg/mL) and 320 L plasma. The volume of plasma in the TEG cups was kept constant 

regardless of the number and volume of substances added, either 320 µL (HA NPs) or 340 µL (all 

other conditions) (Table 1).  Microbead and HA NP suspensions were vortexed immediately prior 

to pipetting into the TEG cup. TEG assays were also carried out using citrated FXII-depleted 

plasma (catalog number FDP12-10, Lot D12-34, pooled PPP immunoadsorbed to deplete FXII to 

<1%, HEPES buffered, frozen; Precision BioLogic). Plasma was thawed at 37°C, depleted of MPs 

by ultracentrifuging at 50,000xrpm as described above, then the coagulation assay performed by 

pipetting into the TEG cup: 20 L of 200 mM CaCl2 ± 2.5 mg/mL glass microbeads, 20 L of 

ddH20, or 20 L FXIa (Haematologic Technologies, VT, USA; diluted 1:500, 1:5000 or 1:12,500 

in ddH20 from a 591 U/mg, 5.1 mg/mL stock), then 320 L FXII-depleted MP-depleted plasma.  

2.5 Environmental Scanning Electron Microscopy (ESEM) 

MPs were pelleted by ultra-centrifugation (136,000xg, 30 minutes, 4°C), then re-suspended in 100 

µL supernatant by 20 seconds of vortex mixing, fixed by adding excess 2% glutaraldehyde/0.1 M 

sodium cacodylate pH 7.3, washed twice in ddH20 (ultra-centrifuging each time), then transferred 

to an ESEM stage and imaged under high vacuum in a Quanta 200 field-emission gun (FEG) 

environmental scanning electron microscope (ESEM).  PPP and MP-depleted plasma clots were 

formed in the presence of glass microbeads for 70 minutes at 37°C with light agitation, fixed in 
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2% glutaraldehyde/0.1 M sodium cacodylate pH 7.3, washed 3 times 5 min. in ddH20, dehydrated 

in graded ethanol series followed by amyl acetate/ethanol, submitted the Facility for Electron 

Microscopy Research (McGill University, Montreal, Canada) for critical-point drying, then 

submitted to the following gold sputtering parameters: 80 seconds (<8 nm thickness), pump 

pressure 0.08 mBar, sputter current: 30 mAmp, table position: at 30 mm target to sample distance, 

and analyzed under high vacuum mode at 10 kV by ESEM.   

2.6 Statistical Analyses       

Data are presented as mean (marker) ± standard error (bars) ± standard deviation of the mean 

(whiskers). Differences in TEG parameters R, α (alpha) and MA were evaluated using the General 

Linear Model with an Unequal N Honest Significant Differences (HSD) post-hoc test (Statistica 

v12, Tulsa, OK, USA). Sample numbers for PPP samples were as follows: Cyrolite TEG cup 

N=14, HMDSO-coated TEG cups N=6, latex beads N=3, carboxylated CML latex beads N=6, 

glass beads N=8, HA at 25 mg/mL N=5, L-PPE:O coated TEG cups at R=0.075 N=5, MP-enriched 

plasma N=10. Sample numbers for MP-depleted plasma were as follows: Cyrolite TEG cup N=11, 

HMDSO coating N=4, latex beads, N=4, carboxylated CML latex beads N=6, glass microbeads 

N=7, HA NPs N=4, L-PPE:O coating (R=0.075) N=8. MP-enriched PPP N=9. The level of 

significance was set at p = 0.05.  

 

3. Results   

MPs pelleted from citrated PPP by ultracentrifugation and fixed in glutaraldehyde formed 

circular sub-micron aggregated structures (Fig. 2A). In the TEG assay with standard plastic cups 

and pins, PPP and PPP 2-fold enriched for MPs (E-PPP) spontaneously coagulated with burst 
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kinetics proportional to MP concentration, whereas MP-depleted plasma failed to coagulate (Fig. 

2B).    

TEG cups and pins were modified by PECVD to have surfaces with different levels of 

[COOH] by step-wise increases in the O2/C2H2 gas flow ratio (R=0.025, 0.05, and 0.075); the 

resulting L-PPE:O surfaces had increasing wettability as shown by a progressive decrease in water 

contact angle (WCA 64°, 51° and 45°, respectively, Table 2), along with a progressive increase in 

oxygen content, [O] ([O] = 14.3, 24.4, and 29.8 atomic % (at%)). L-PPE:O R=0.05 had [O] 

comparable to that of Cyrolite ([O] = 22.3 at%, Table 3). It is important to note that one L-PPE:O 

surface with the lowest oxygen level had zero [COOH] content, while the other two L-PPE:O 

surfaces had 4.4, and 6.8 at% [COOH}, respectively (peak E, Table 4, Fig. 3). Uncoated Cyrolite 

was more hydrophobic (WCA 77°) and HMDSO-coated surfaces were hydrophobic (WCA 98°, 

Table 2), which is consistent with a lack of free hydroxyl (OH) or carboxylic acid (COOH) groups 

in the methacrylate-based Cyrolite or in PP-HMDSO organosilicone film coatings (Table 4) [5].   

The anionic character of L-PPE:O thin layers with 6.8 at% [COOH] immersed in water has 

been previously established (-15 V surface potential) [5]. Another experimental anionic material 

consisted of HA NPs with a Ca/P ratio of 2.03 [22]. HA NPs showed a zeta potential of -6.19 ± 

0.83 mV in 10 mM NaCl of pH=7.0. Borosilicate glass (SiO) has an anionic surface in aqueous 

solution [23] that promotes the FXII-dependent contact pathway [24]. As calcium is  essential for 

coagulation, it is interesting to note that the HA NPs showed a structure of Ca10(PO4)6(OH)2 [22], 

and according to XPS analyses, glass microbeads showed a calcium content of 2.4 at% Ca2p3 

(peak signal at 248.3 eV).  

PPP showed an average 16 ±6 minute clot initiation time in standard plastic Cyrolite TEG 

cups and pins, whereas HA NPs accelerated PPP coagulation in a dose-dependent manner, with 
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optimal stimulation at 2 mg/mL (parameter R, Fig. 4A). At the optimal concentration, all three 

anionic surfaces (2 mg/mL HA NPs, 0.2 mg/mL glass beads, L-PPE:O with 6.8 at% [COO] 

shortened PPP coagulation time to precisely 9±1 minutes (p<0.05 to 0.01 vs all other surfaces,  

Fig. 4B). Hydrophobic surfaces (HMDSO coatings, latex beads), and mixed 

hydrophobic/hydrophilic surfaces (CML beads), delayed the average PPP clot initiation time to 

between 19 and 23 minutes (black boxes, Fig. 4B). PPP burst-coagulated with an average alpha 

38°±16° that was depressed by hydrophobic surfaces to between 23° and 29°, and amplified by 

anionic surfaces to have consistently high values of 62°±4° (glass beads), 60°±4° (HA NPs), 

and 53°±6° (L-PPE:O) (p<0.05 to 0.001 vs all other surfaces, open boxes, Fig. 4B). The maximal 

amplitude (MA) value, which reflects clot tensile strength was not significantly altered by any of 

the surfaces (grey boxes, Fig. 4). To summarize, these data showed that all three anionic surfaces 

promoted a faster and more reproducible burst coagulation of PPP which contains MPs and trace 

platelets (i.e., less than 1 million platelets per mL versus 143 to 450 million platelets per mL in 

normal human whole blood [25]).  

Remarkably, synthetic anionic surfaces restored burst coagulation of MP-depleted plasma 

in a dose-dependent manner. L-PPE:O nano-coatings initiated coagulation according to carboxylic 

acid content, with an average clotting time of 18 minutes and  = 32° for 4.4 at% [COO], and a 

more rapid clotting time of 11 minutes and  = 48° for 6.8 at% [COO] (Fig. 5A). Most 

importantly, L-PPE:O surfaces devoid of [COO] failed to induce coagulation of MP-depleted 

plasma (R=0.025, Fig. 5A). HA NPs induced burst coagulation of MP-depleted plasma at 2 mg/mL 

(but not lower concentrations), with a relatively slower clotting time of 24 minutes and  37° 

(Fig. 5). Glass microbeads induced burst coagulation of MP-depleted plasma at 0.2 mg/mL, with 

a clotting time of 17 minutes and α = 40° (Fig. 5B). Glass beads coated with HMDSO by PECVD 
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no longer induced coagulation of MP-depleted plasma, ruling out surface curvature as a factor 

(data not shown; Table 5). Among all anionic surfaces, L-PPE:O coatings with 6.8 at% [COO] 

induced the shortest clotting time (11 minutes), and highest α (48°) of MP-depleted plasma (Fig. 

6A). Clot tensile strength was similar for PPP, E-PPP, and MP-depleted plasma induced to 

coagulate with anionic surfaces (Fig. 5B). To summarize, these data showed that organic (L-

PPE:O), crystalline (HA NPs), and amorphous solid (glass microbead) synthetic anionic surfaces 

had a similar in vitro pro-coagulant activity as MPs.      

Given that anionic surfaces activate FXII and induce the contact pathway, we evaluated 

the potential role of the contact pathway in coagulation of MP-depleted plasma. We used used 

FXIa, the factor immediately downstream of FXIIa, to by-pass FXII and initiate coagulation in 

FXII-depleted, MP-depleted plasma. As expected, calcium or calcium with glass beads failed to 

induce coagulation (Fig. 6B). FXIa stimulated a dose-dependent burst coagulation of FXII-

depleted plasma, MP-depleted plasma, with no effect of glass beads (Fig. 6B). These data showed 

that activation of the contact pathway is sufficient to induce burst coagulation of MP-depleted 

plasma. 

Fibrin clot fiber structure was examined at high-magnification in PPP and MP-depleted 

plasma coagulated in the presence of glass microbeads. A meshwork of fibrin fibers enveloped the 

glass beads (Fig. 7A & D). Thick and thin fibrin fibers adhered to the glass beads in both PPP clots 

and MP-depleted plasma clots (Fig. 7A-B vs 7D-E).  Fibrin networks formed in PPP and MP-

depleted plasma in the presence of glass beads had a similar structure (Fig. 7C vs 7F), except for 

the presence of sub-micron spherical aggregates near the surface of the PPP clot that could 

represent lipid micelle aggregates (Fig. 7C).  
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4. Discussion  

This study has generated new knowledge of the inherent potential for synthetic anionic 

surfaces to initiate and propagate burst coagulation of citrated plasma. Our data reveal a previously 

unsuspected ability of calcium phosphate minerals, glass beads, and carboxylated surfaces to 

substitute for anionic phospholipid surfaces normally provided by MPs in platelet-poor plasma 

[16]. Seminal experiments by Ratnoff showed that anionic glass surfaces activate the contact 

pathway in blood plasma through FXII [28]. More recently, it was suggested that hydrophobic 

surfaces also have the potential to activate the contact pathway through factor XII activation [24], 

however these previous studies were carried out using PPP [29] which also contains MPs. In the 

present study, we showed that MPs were necessary and sufficient to induce burst coagulation of 

recalcified citrated plasma. These results are consistent with the findings of Wang et al [27] 

showing that murine neutrophil-shed MPs stimulate thrombin generation through a FXII-

dependent pathway. We furthermore showed that hydrophobic surfaces and polar uncharged 

surfaces (Latex beads, CML beads, L-PPE:O R=0.025 with 0 at.% [COO]) failed to accelerate 

coagulation of PPP, and also failed to induce coagulation of MP-depleted plasma.  Anionic 

surfaces could substitute for MPs in initiating coagulation of MP-depleted plasma, provided that 

the contact pathway was initiated (i.e., FXIa). The resulting fibrin clot structure was similar for 

PPP and MP-depleted plasma fibrin clots. From the collective data, we conclude that synthetic 

anionic surfaces analyzed in this study induced burst coagulation of MP-depleted plasma with 

kinetics related to their rates of FXIIa and FXIa generation.  

Data generated in this study and others suggest that MP surfaces present in normal pooled 

human citrated blood plasma have a similar ability to stimulate the contact pathway as a variety of 

synthetic anionic surfaces, including glass, L-PPE:O and HA NPs. These overall findings are 
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important because many historical coagulation experiments have over-looked MPs as contributors 

to contact-activation in samples that are often citrated PPP. These data add new information to 

growing evidence that MPs participate in mediating large thrombus formation, by generating FXII 

at a distance from cell surfaces . The effect could be more relevant in context of stagnant blood 

flow such as a compressed wound, because otherwise the MPs would be carried away by the 

circulation from the bleeding site.  

Numerous studies have shown that FXII, the first enzyme of the contact pathway, is 

activated by anions such as poly-phosphates liberated from platelets, by glass, ellagic acid, kaolin, 

carboxylated anionic polystyrene nanoparticles, long-chain non-saturated fatty acids (stearate), 

dextran sulfate, as well as more recently MPs with surface-exposed PS [1, 16, 24, 27, 28, 31-35]. 

During the initiation phase of the contact pathway, anionic surfaces adsorb FXII, as well as high 

molecular weight kininogen (HMWK), a cofactor that circulates as HMWK-prekallikrein (PK) 

and HMWK-FXI dimer complexes [34, 36, 37]. It is believed that surface-adsorbed FXII 

undergoes allosteric changes that expose the active site of the zymogen without proteolytic 

cleavage, which permits FXII to activate PK to kallikrein [26]. This model is supported by the 

observation that in FXII-deficient plasma, anionic surfaces cannot convert PK to kallikrein [38]. 

FXII adsorbed to anionic surfaces renders FXII 50-times more susceptible to proteolytic 

activation, notably by kallikrein in the presence of HMWK . This sets up a reciprocal FXIIa and 

kallikrein activation on the anionic surface as well as FXIIa activation of FXI/HMWK to 

FXIa/HMWK [38]. All of these steps can occur in the absence of calcium [37]. When contact 

activation takes place in the presence of calcium, the common pathway is directly launched: FXIa 

converts FIX to FIXa (tenase) by 2 cleavages [41], then FIX converts FX to FXa (prothrombinase), 

and then prothrombinase cleaves FII (prothrombin) to form thrombin.  
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The common pathway reactions are spatially coordinated due to conserved gla domains in 

FIX, FX and FII that allow the factors to become concentrated on PS+ membranes. In previous 

studies, platelet-derived poly-phosphate, anionic carboxylated nanobeads, and kaolin accelerated 

coagulation of PPP in a dose-dependent manner at 0.02 to 0.5 mg/mL [31, 32, 42], similar 

concentrations as the glass microbeads and HA NPs analyzed in this study. It is noteworthy that 

all three of these surfaces stimulated PPP coagulation with a kinetics very similar to that reported 

by Fletcher et al. for kaolin-activated human pooled PPP (R=9.4 minutes, =52°, MA=24.6 mm) 

[42]. This reproducible 9 minute delay for contact-activated PPP to coagulate was simulated by 

adding 0.03 U/mL FXIa to MP-depleted, FXII-depleted plasma, and shortened by adding 0.3 U 

FXIa, suggesting that the rate of FXII is a limiting factor in the reproducible maximal kinetics of 

coagulation in the TEG assay. Another factor in the time delay could be related to the time required 

for initial thrombin levels during the initiation phase, or “kindling phase”, to activate cofactors 

FVIII and FV that are missing a gla domain [43]. After contact pathway activation of PPP, tenase, 

prothrombinase and prothrombin can concentrate on the surface of PS+ MPs leading to burst 

coagulation. Collective data indicate that HA NPs, glass beads and L-PPE:O activated the contact 

pathway; however this still begs the question, where did tenase, prothrombinase, and prothrombin 

bind in MP-depleted plasma induced to coagulate by glass beads, HA NPs and L-PPE:O containing 

[COO]?   

Burst coagulation through the intrinsic pathway depends on a battery of coagulation factors 

that form multi-subunit assemblies, and PS plays an essential role. Among the major phospholipids 

phosphatidyl choline, phosphatidyl ethanolamine, and PS, PS is the only anionic lipid that can 

effectively mediate coagulation factor assembly although lysophosphatidyl serine can also 

complex with gla domain pro-coagulant factors [44]. PS is the only lipid to carry a negatively 
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charged carboxyl group at neutral pH (pKa 3.6) [45]. It is believed that a single PS molecule 

complexes with the gla domain of prothromin through the PS carboxylate group and two calcium 

bridging ions embedded in the gla domain while phosphates of PS and surrounding lipids serve to 

stabilize and orient the rest of the gla domain so that the active site presents at the optimal distance 

from the lipid membrane surface [44]. The PS carboxylate group therefore mediates gla domain 

tethering. 

Gla domains carry a cluster of glutamic acid residues bearing extra carboxyl groups 

through a Vitamin K-dependent post-translational modification. The highly charged gla domain is 

folded in a tight complex with multiple calcium ions to form a binding site that latches the factor 

in an optimal orientation onto lipid membrane surfaces rich in anionic PS [19, 44]. Active thrombin 

is generated by two thrombinase cleavages, one that cleaves inside the thrombin enzyme and 

another that splits thrombin from the F1.2 gla domain-containing fragment [46]. According to the 

current modified “waterfall” model of coagulation factor activation, low levels of thrombin 

generated during the initiation phase feed-back activate co-factors lacking a gla domain: FXI, FV 

and FVIII [47-49], although the ability of thrombin to activate FXI in plasma is under debate [50]. 

Activation of FVa is a crucial step because FXa prothrombinase activity is exponentially ramped 

up by recruitment of FVa which can also complex with the gla domain of prothrombin [48, 51]. 

This sequence of events leads to explosive thrombin generation in the propagation phase, all 

provided that binding sites such as PS are available to concentrate the gla domain factors in the 

same physical space [52].   

The active site of FVIIa bound to TF is estimated to occur at 52 to 76 Å from the plasma 

membrane surface. Ohkubo [19] estimated that insertion of the gla domain into the anionic lipid 

membrane is required for optimal alignment of the catalytic domains of coagulation factors. Both 

Ohkubo [19] and Baylon [56] estimated from theoretical models that coagulation factors bearing 
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gla domains become optimally aligned when the  loop of the gla domain inserts into anionic 

membranes to a depth of around 5 to 10 Å. In this model, the calcium ions complexed with gla 

residues are close to the phosphate groups of lysophosphatides [19]. The  loop may have some 

capacity to interact with carboxylic acid groups in L-PPE:O. The  loop has no capacity to 

penetrate the smooth glass or HA NP surfaces, although is relevant to note that calcium ions can 

complex with PO4
3 and mediate the binding of a variety of gla-domain proteins with bone mineral 

phosphates including SPARC (osteonectin), matrix gla protein (MGP), and gla-rich protein (GRP) 

[54, 55]. It is therefore possible that gla domain coagulation factors could concentrate on the 

surfaces of HA NPs through mechanisms that remain to be elucidated. However, given that XIa 

alone could stimulate burst coagulation of MP-depleted plasma in the absence of exogenous 

anionic surfaces, it is most probable that residual MPs remained in our MP-depleted plasma and 

provided sufficient phosphatidyl serine groups and/or their tissue factor to mediate gla domain 

factor assembly. Future experiments are warranted to clarify these physical interactions and 

potential role of TF.  

Our study provides a new type of advanced prothrombin time (APTT) test, where in the 

TEG assay the kinetics of spontaneous clot initiation by trace MPs in PPP could be out-competed 

by 0.2 mg/mL glass microbeads to initiate a very precise clot initiation time in the TEG assay. The 

glass microbead TEG assay could therefore be used with PPP or MP-depleted plasma to compare 

the relative effect of biomaterials, activators and inhibitors on the intrinsic coagulation cascade. 

Future tests will show whether the glass microbead TEG assay will give similar results with 

clinical samples from subjects with different inflammatory states, distinct anticoagulant therapies 

(Coumadin, heparin, aspirin), and MP populations. 
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Findings in this study have some clinical relevance. The pro-coagulant activity of calcium 

phosphate crystals in vivo could serve a beneficial function of ensuring that thrombin is generated 

at a fractured bone mineral surface, with ensuing fibrin formation connecting the fracture with the 

hematoma. Shiu et al [57] have argued that fibrin clot formation plays a key role in contact 

osteogenesis, by serving a scaffold for continuous recruitment of osteogenic cells for direct bone 

deposition on an implant surface. With this notion, and the data presented here, we propose that 

some anionic particle-containing biomaterials could be osteogenic in vivo by virtue of their initial 

pro-thrombogenic activity at the time of implantation. Pro-coagulant activity of anionic particles 

wear debris could also have implications in certain painful disease states such as heterotopic 

ossification which occurs through unexplained mechanisms in soft tissues around healing 

polytraumatic bone fractures, and in osteoarthritis [58]. These data provide a new understanding 

of biomaterial-blood interactions and the potential impact on human health.  The implication is 

that bone void fillers with anionic surfaces could activate the coagulation cascade to promote fibrin 

fibers to connect with the material and provide a scaffold for inward cell migration, because HA 

NPs, bioactive glass, and MPs are sufficient to mediate coagulation in the absence of platelet 

activation.  
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Figure Legends 

 

Figure 1: Kinetics of fibrin fiber formation influence different stages of the TEG trace. Panel (A) 

shows stages of coagulation and fibrin fiber formation in the TEG assay in a representative trace 

of recalcified citrated platelet-poor blood plasma sample. Panel (B) depicts the sequential process 

of fibrin polymerization after thrombin-induced cleavage of telopeptides A and B from the 

fibrinogen hexamer precursor. Pro-coagulant activity can be demonstrated by a shorter clotting 

time (R), shorter time to attain 20 mm amplitude (K), and high alpha (, angle, red lines).   

 

Figure 2. Ultrastructure of the pelleted formalin-fixed MP fraction by ESEM imaging (A) and 

representative TEG traces of recalcified citrated PPP, MP-enriched, and MP-depleted plasma 

permitted to coagulate spontaneously in the Cyrolite plastic TEG cup and pin (B).  PPP and MP-

enriched plasma coagulated spontaneously but MP-depleted plasma failed to coagulate.  

 

Figure 3.  High resolution X-ray photon spectroscopy (C1s and O1s) spectra for L-PPE:O 

coatings: a) R= 0.025,  b) R= 0.050,and c) R= 0.075. Peak E representing the carboxylic acid 

group is only detected for b) R= 0.050,and c) R= 0.075. 
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Figure 4. TEG assay of PPP coagulation in the presence of different surfaces. Coagulation was 

accelerated by synthetic anionic surfaces and delayed by hydrophobic surfaces, relative to the 

conventional Cyrolite TEG cup and pin surfaces.  (A) HA NPs accelerated PPP coagulation in a 

dose-dependent manner. These data are the first to our knowledge to show that hydroxyapatite is 

a pro-coagulant surface that accelerates PPP coagulation.  N=4 each condition except 25 mg/mL 

was N=5. (B) Anionic surfaces provided by glass beads and L-PPE:O (R= 0.075, 6.8 atomic % 

[COO]) stimulated PPP coagulation while hydrophobic (CYR, H, LB) and hydrophilic 

uncharged surfaces (CB) slightly delayed coagulation. Abbreviations: MA: maximal amplitude; 
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R: clotting time; (alpha): angle of burst coagulation; CYR: Cyrolite® TEG cups and pins; H: 

PP-HMDSO-coated TEG cups and pins; LB: latex beads; CB*: CML carboxylated latex beads 

that only carry a net negative charge at alkaline pH (pH 10); GB: Glass microbeads; PPEO: R= 

0.075 L-PPE:O-coated TEG cups and pins. Sample characteristics: See Table 1.    

 
Figure 5. TEG assay of MP-depleted plasma coagulation in the presence of different surfaces. 

Anionic surfaces accelerated coagulation of MP-depleted plasma while hydrophilic surfaces 

lacking free carboxyl groups and hydrophobic surfaces failed to induce coagulation in the 
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Cyrolite TEG cup. (A) All L-PPE:O nanocoatings have oxygen content but only those with 

[COO] content, and HA NPs at the highest concentration, restored burst coagulation of MP-

depleted plasma. (B) Glass microbeads, HA NPs and L-PPE:O (R=0.075), but not non-anionic 

surfaces, induced MP-depleted plasma coagulation that was comparable to PPP and MP-enriched 

PPP.  Abbreviations: MA: maximal amplitude; R: clotting time; (alpha): degrees of inflection 

of the TEG curve where higher angles reflect higher clot velocity; CYR: Cyrolite® TEG cups 

and pins; LB: latex beads; H: HMDSO-coated TEG cups and pins; CB*: carboxylic acid 

modified latex beads are uncharged at neutral pH; GB: glass microbeads HA: hydroxyapatite 

nanoparticles; PPEO: L-PPE:O-coated TEG cups and pins; MP: Microparticles; PPP: platelet-

poor plasma; E-PPP: MP-enriched plasma.    
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Figure 6. TEG traces of burst coagulation of MP-depleted plasma including (A) MP-depleted 

plasma and (B) FXII-depleted plasma(A) All 3 types of anionic surface induced explosive 

thrombin generation in MP-depleted plasma including L-PPE:O at increasing [COO] (in at%), 

glass microbeads, and HA NPs. (B) FXIa was necessary and sufficient to induce burst 

coagulation in a dose-dependent manner of FXII-depleted, MP-depleted plasma with no effect of 

added glass microbeads.   
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Figure 7. ESEM high-magnification imaging of PPP clots (A-C) and MP-depleted plasma clots 

(D-F) formed in the presence of glass microbeads showed a similar fibrin clot structure. Both 

thick and thin branched fibrin strands adhered to the glass beads. Small arrows in Panels A & C 

indicate glass beads; arrow in panel C indicates aggregated spherical structures near the top of 

the sample that could be lipids.  
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Table 

 

Table 1. Materials tested for pro-coagulant activity in PPP or MP-depleted plasma. 

Surface tested Supplier Character Surface type 

Cyrolite®     Haemscope hydrophobic             bare TEG cup and pin 

PP-HMDSO                 In-house hydrophobic TEG cup and pin surface 

nanocoating; glass bead coating 

L-PPE:O               In-house hydrophilic/anionic 

0, 4.4, or 6.8 at% 

[COO⁻ ]  

TEG cup and pin surface 

nanocoating 

Latex (polystyrene) beads Sigma-Aldrich hydrophobic  10 µm diameter beads 

Carboxylated CML latex beads* Life Sciences hydrophobic/hydrophilic 10 µm diameter beads  

Glass microbeads    

             

Matweb hydrophilic/anionic    10 µm diameter beads 

HA nanoparticles  (MIV 

CTAB/IGEPAL-based crystals) 

In-house hydrophilic/anionic  

(2.03 Ca/P) 

41 nm length, 9 nm diameter 

nano-cylinders 

 * According to the COA: 6.8 x 108 COOH/bead with a hydrophilic surface at neutral pH but COOH is fully charged 

only at pH 10; according to our XPS measures, CML beads had <1 at% COOH. at%: atomic %. Ca/P: calcium 

phosphate 
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Table 2. Parameters used to deposit L-PPE:O and PP-HMDSO on TEG cups and pins by 

PECVD, and corresponding Water Contact Angle (WCA) values.  

Surface / 

Deposit 

Gas flows 

(sccm) 

r. f. power 

(W) 

Pressure 

(mTorr) 

Deposition 

time (min) 

WCA 

(°) 

Cyrolite® -- -- -- -- 77±1 

L-PPE:O 

R=0.025 

Ethylene - 20 

Oxygen - 0.5* 
10 600 20 64±1 

L-PPE:O 

R=0.050 

Ethylene - 20 

Oxygen - 1.0* 
10 600 40 51±2 

L-PPE:O 

R=0.075 

Ethylene - 20 

Oxygen - 1.5* 
10 600 60 45±1 

PP-HMDSO HMDSO - 20 50 60 2 98±2 

Abbreviations: sccm: standard cubic centimeters per minute; *produced by a mixture of 10% O2 and 90% Ar, 

and variable O2/Ar gas flow  
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Table 3. Elemental composition of Cyrolite® and L-PPE:O deposits with different oxygen 

flow rates (R=O2/C2H4): R= 0.025, R= 0.050, and R= 0.075. 

Element 
C1s 

(at.%) 

O1s 

(at.%) 

Cyrolite 77.7±2.5 22.3±2.5 

R = 0.025 85.7±0.9 14.3±0.9 

R = 0.050 76.9±1.9 24.4±0.8 

R = 0.075 70.2±0.8 29.8±0.8 

 

Table 4. C1s- and O1s-deconvolutions of L-PPE:O deposits for R= 0.025, R= 0.050, and R= 

0.075, component concentrations, possible chemical bonds and binding energies (BE)  

Element C1s O1s 

Peak label A B C D E A B 

Peak BE 

(eV) 
285.0 285.7 286.6 287.9 289.2 

531.9-

532.4 

533.0-

533.6 

Possible 

chemical 

bond 
C-C C-COOR C-OR C=O COOR O=C O-C 

R= 0.025 

(at.%) 
71.0±1.3 ----- 9.8±0.1 4.5±0.4 ------ 5.2±0.6 9.6±0.3 

R= 0.05 

(at.%) 
50.6±2.0 4.4±0.2 11.7±1.1 6.2±0.3 4.4±0.2 14.0±0.6 10.7±0.2 

R= 0.075 

(at.%) 
36.5±0.9 6.8±0.4 12.7±0.5 6.8±0.2 6.8±0.4 17.9±0.2 12.6±0.1 

Cryolite® 47.2 9.8 10.8 - 9.8 11.3 11.0 
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Table 5. Elemental composition of 500 µm diameter glass beads, unmodified and after 

coating with PP-HMDSO 

Unmodified glass 

beads (at. %) 
PP-HMDSO coated 

glass beads (at. %) 

[Si]=16 [SiO2]=1.57 

[O]=45 [SiO1.5C]=5.5 

[C]=37 [SiOC2]=5.5 

[Ca]=1 [SiO0.5C3]=5.5 

[Na]=0.5  
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