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Abstract: Tandem photoelectrochemical cells (PECs), made up of a solid electrolyte membrane 
between two low-cost photoelectrodes, were investigated to produce “green” hydrogen by 
exploiting renewable solar energy. The assembly of the PEC consisted of an anionic solid polymer 
electrolyte membrane (gas separator) clamped between an n-type Fe2O3 photoanode and a p-type 
CuO photocathode. The semiconductors were deposited on fluorine-doped tin oxide (FTO) 
transparent substrates and the cell was investigated with the hematite surface directly exposed to a 
solar simulator. Ionomer dispersions obtained from the dissolution of commercial polymers in the 
appropriate solvents were employed as an ionic interface with the photoelectrodes. Thus, the 
overall photoelectrochemical water splitting occurred in two membrane-separated compartments, 
i.e., the oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) 
at the cathode. A cost-effective NiFeOx co-catalyst was deposited on the hematite photoanode 
surface and investigated as a surface catalytic enhancer in order to improve the OER kinetics, this 
reaction being the rate-determining step of the entire process. The co-catalyst was compared with 
other well-known OER electrocatalysts such as La0.6Sr0.4Fe0.8CoO3 (LSFCO) perovskite and IrRuOx. 
The Ni-Fe oxide was the most promising co-catalyst for the oxygen evolution in the anionic 
environment in terms of an enhanced PEC photocurrent and efficiency. The materials were 
physico-chemically characterized by X-ray diffraction (XRD), transmission electron microscopy 
(TEM) and scanning electron microscopy (SEM). 

Keywords: low-cost semiconductors; hematite photoanode; cupric oxide photocathode; solar to 
hydrogen efficiency; photoelectrochemical cell; photoelectrolysis 

 

1. Introduction 

Photoelectrochemical splitting of water has been widely investigated in recent decades [1–6], in 
order to obtain “green” H2 as an energy vector. Hydrogen is evolved at the cathode and O2 at the 
anode of the photoelectrochemical cell (PEC) by converting renewable resources from nature [7,8], 
such as sunlight and water, which are abundant almost everywhere on Earth. 

For a large-scale commercialization of these devices, the main gaps of this technology, which 
need to be overcome, could be summarized as follows: 
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• Expensive electrode materials and components; 
• Difficulty in separating pure H2 from water vapour in the output stream; 
• Too low solar to hydrogen (STH) efficiency; 
• Use of corrosive electrolytes limiting the durability of the PEC. 

In this study, an innovative concept of tandem cell architecture [9,10] using a transparent 
polymer electrolyte membrane is further implemented compared with our previous studies by 
introducing a co-catalyst for the anode based on earth-abundant metal oxide semiconductors.  

This tandem PEC is able to capture a significant portion of the solar energy. The photoanode 
(PA), directly exposed to the solar irradiation absorbs higher energy photons according to its energy 
gap of 2.1 eV (λ < 590 nm), whereas the underlying photocathode (PC), exposed to the light 
transmitted or diffused through the transparent polymer electrolyte membrane, absorbs lower 
energy photons with a band gap of 1.2 eV (λ < 1033 nm). 

Fe2O3 and CuO, which were previously studied separately for O2 and H2 generation, 
respectively, showing high photoresponses [11–15], were deposited onto transparent fluorine-doped 
tin oxide (FTO) glasses. Among the large number of semiconductor materials actively investigated 
as candidates for the OER [16–20], n-type hematite (n-Fe2O3) is widely employed as a photoanode 
according to several advantages such as its low cost, suitable stability and favourable band gap and 
band level positions in relation to the reversible potential for oxygen evolution [21,22]. However, 
this semiconductor exhibits a high recombination rate, low carrier mobility and slow carrier transfer 
[23,24]. To overcome these drawbacks, doping and nano-structuring [25–27] are adopted to increase 
the photocurrents while the use of co-catalysts [28–35], stratified onto the Fe2O3 photoanode, appears 
as a suitable strategy to enhance the charge transfer at the interface, thus improving the OER 
kinetics. This has been widely identified as the slow step of the water splitting process.  

Among the various co-catalysts, cobalt phosphate (CoPi) complexes have been largely 
employed to enhance photoelectrochemical efficiency with an excellent catalytic activity 
demonstrated for both anodic and cathodic processes [32]. However, the focus of this work was to 
investigate non-critical raw materials for the European Union (EU). Cobalt (cobalt phosphate) is 
unfortunately included in the EU critical raw materials (CRM) list. Accordingly, CoPi was not taken 
into consideration in this work [36]. Moreover, the CoPi stability at the interface of strongly alkaline 
membranes may represent an issue. CoPi seems to be more appropriate for milder pH conditions 
[37–41]. However, for the sake of comparison, some other CRM materials, stable in strong alkaline 
conditions, have been analyzed. 

A solid anion exchange membrane (FAA3-50, from Fumatech) was used to separate the 
electrodes and avoid the recombination of the evolved gases. Generally, the use of a solid membrane 
allows a proper ion flow and an enhanced durability of the cell compared with conventional liquid 
electrolyte-based systems. A previous study highlighted promising properties for these anionic 
membranes in comparison with the protonic ones, e.g., Nafion® for photoelectrolysis applications. 
Anionic membranes can provide proper ionic conduction and a mild noncorrosive environment to 
enhance the durability of non-critical raw materials. Ionomer dispersions (named FAA3 ION), 
derived from the same polymers, were used either to extend the interface with the semiconductor 
surface or for a stabilisation effect [9]. The semiconductors are characterised by both nanofibers and 
a columnar nanostructure and require an extended interface with the solid electrolyte.  

In this study, a small tandem cell architecture (0.25 cm2 exposed area) formed by 
FTO/photoanode/co-catalyst/ionomer/hydrated membrane/ionomer/photocathode/FTO was 
studied by focusing on the co-catalyst effect. In order to form a suitable n-type hematite 
semiconductor, doping with P and Sn was adopted to increase the photoresponse of the bare Fe2O3 
PA. FTO is a fluorine-doped tin oxide (F/SnO2). Sn doping is a result of employing an F/SnO2 
substrate and a high temperature in the thermal treatment (750 °C), while P doping has been 
described for a number of years [25,42]. Hematite was characterized by a specific nanocolumnar 
structure, as necessary to deal with the short diffusion lengths of the minority carriers. The 
investigated catalytic enhancer was an in-house prepared NiFe-oxide. Its properties were compared 
to IrRuOx [43,44] and La0.6Sr0.4Fe0.8Co0.2 (LSFCO) [45] as benchmark catalysts for the oxygen 
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evolution reaction under alkaline conditions. The performance of the aforementioned co-catalysts 
was studied in a complete PEC cell in the presence of an ionomer dispersion and an anionic 
membrane [46,47] to evaluate their effect under practical conditions.  

2. Results 

2.1. Physicochemical Characterization  

XRD Analysis of co-Catalysts 

Figure 1a shows the XRD pattern and TEM image (inset of the Figure) of the NiFeOx 
co-catalyst. The sample exhibits a spinel cubic structure and a crystallite size, calculated by a 
Debye–Scherrer equation, of 15 nm (NiFeOx), whereas the TEM image shows a homogeneous 
distribution of nanoparticles of similar size. The NiFeOx co-catalyst (Ni/Fe = 1:1 wt %) shows mainly 
the crystalline structure of the NiFe2O4 spinel phase (JCPDS card n° 10-0325). However, also a small 
presence of Fe2O3 and NiO phases (JCPDS cards n° 24-0072 and 22-1189, respectively) is identified. 
The crystallite size was determined from the average of the peak broadening of the four main 
reflections. The XRD pattern of Fe2O3 is reported in the Supplementary Materials (Figure S1). Figure 
1b,c shows the cubic and tetragonal structures of the commercial LSFCO perovskite and 
in-house-prepared IrRuOx, respectively, with a mean crystallite size of 50 and 8 nm. 

 

 

(a) 

(b) 
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Figure 1. XRD tests and TEM images in the inset for (a) NiFeOx, (b) La0.6Sr0.4Fe0.8Co0.2 (LSFCO) and (c) 
IrRuOx. 

2.2. Photoelectrochemical Characterization 

Figure 2 shows the principle of operation of the tandem cell. The hematite photoanode absorbs 
photons with wavelengths lower than 590 nm according to its energy gap (2.1 eV); the membrane is 
transparent in the useful wavelength range allowing an efficient irradiation transmission, whereas 
the CuO photocathode absorbs photons at wavelengths shorter than 1000 nm (1.2 eV). On the 
right-hand side of Figure 2, an energy diagram for the photoconversion process is shown. Light 
harvesting generates electron–hole pairs in both electrodes. In the PA, the band edge bending, 
appearing in the space charge region, drives the photogenerated holes towards the interface (and 
electrolyte) and the electrons to the external circuit. The reference electrode and counter electrode 
(RE/CE) are connected to the FTO collector of the photoanode and working electrode, and the 
sensing electrode (WE/SE) to the photocathode. The valence band levels for Fe2O3 are at a suitable 
potential to be able to produce oxygen evolution from water. In parallel, the band edge bending in 
the PC drives the electron towards the electrolyte. The conduction band level, for CuO, is located at a 
potential low enough to cause the hydrogen evolution reaction. 

 
Figure 2. Schematic optical (left) and electronic (right) sketch of the photoelectrochemical cell (PEC) 

under solar irradiation. 

(c) 
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The photoconversion reactions are reported in Equations (1) and (2), considering an alkaline 
environment due to a first conditioning of the electrodes in NaOH and to the anionic nature of the 
membrane: 

Anode: 

2 OH− + 2 h+ → ½ O2 + H2O (1) 

Cathode: 

2 H2O + 2 e− → H2 + 2OH− (2) 

The phototoconversion activity of the three cell configurations based on the different catalytic 
enhancers was investigated by depositing the various co-catalysts onto the hematite photoanode. 
The aim was to improve the oxygen evolution reaction and consequently the water splitting process 
to enhance the solar to H2 efficiency. 

Table 1 summarizes the various PECs obtained by preparing the following assemblies: 
FTO/photoanode+ionomer+co-catalysts/membrane/photocathode+ionomer/FTO. The ionomer 
dispersion (FAA3 ION) was deposited on the composite or bare electrodes. The membrane 
(FAA3-50) and electrode conditioning (0.5 M NaOH 1h) were kept constant, whereas the co-catalysts 
(NiFeOx, LSFCO, IrRuOx) were added to the FTO/Fe2O3 photoanode. A conditioning of the ionomer 
and membrane in the alkaline solution before the assembly was necessary in order to exchange from 
chloride to the active hydroxide ionomer species. 

Table 1. Schematization of the co-catalyst-based PEC assemblies. 

Photoanode co-Catalysts Ionomer Membrane Photocathode Ionomer 
FTO/Fe2O3 + P + Sn LSFCO FAA3 ION FAA3-50 FTO/CuO FAA3 ION 
FTO/Fe2O3 + P + Sn NiFeOx FAA3 ION FAA3-50 FTO/CuO FAA3 ION 
FTO/Fe2O3 + P + Sn IrRuOx FAA3 ION FAA3-50 FTO/CuO FAA3 ION 

Figure 3 displays the linear sweep voltammetric curves (from the open circuit potential (OCP) 
to −0.6 V), keeping into account the photocurrent density. This is the difference between the current 
densities under illumination and in the dark. As a compromise between an enhancement of the 
catalytic activity at the anode and a proper transparency, 12 µg cm−2 of co-catalyst loading was 
deposited onto the FTO/Fe2O3+P+Sn and the resulting sample annealed at 450 °C for 1 h in air. A bare 
PEC cell not containing any co-catalyst was also investigated for comparison. The results are shown 
in Figure 3. In all the cases where the co-catalysts were added on the photoanode, the onset potential 
was shifted towards more positive values with respect to the bare PEC but the performance for 
IrRuOx- and LSFCO-based PEC was very similar to the cell without a co-catalyst addition, especially 
in the region between −0.4 V and −0.6 V. By using the same promoter of mass loading, the recorded 
photocurrent (Jlight − Jdark) was higher when the NiFeOx co-catalyst was deposited on the hematite 
photoanode, with a maximum enthalpy efficiency value (determination is discussed in Section 3.5) 
of −0.6 V. The most performing cell showed an efficiency of 0.528% in the bias-assisted region (−0.6 
V), which was 36.7% larger than the bare PEC without a co-catalyst. It is important to point out that 
the photocurrent enhancement at mild bias conditions (−0.4 V) was about 50%. This represents a 
substantial increase. 
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Figure 3. Polarization of the photocurrent for 4 PECs, without any co-catalyst addition and with the 
IrRuOx, LSFCO and NiFeOx co-catalyst-based photoanodes. 

The polarisation curves under illumination and in the dark for the co-catalysts-based cells 
reported in Figure 3 are provided in the Supplementary Materials (Figure S2). 

As shown in the recent literature [48–58], NiFe-oxide catalysts show outstanding properties for 
the oxygen evolution reaction in the alkaline environment because of the possibility of a specific 
tuning of the electronic properties for the adsorption of oxygenated species (e.g., hydroxyl species) 
and their oxidation [59–65]. As is well known, it is important in electrocatalysis to modulate the 
strength of the bonds between the catalyst surface and the adsorbed species. This must not be either 
strong or too labile. In alkaline solutions, the NiFeOx co-catalyst shows a good compromise 
compared to the IrRuOx one. IrRuOx forms strong bonds with the hydroxyl species in the alkaline 
environment, whereas this has optimum characteristics in the acidic environment where the main 
interaction is with water molecules [43,66]. LSFCO has promising surface properties, but being 
almost an insulator at low temperatures [45,67], the electron transfer is somewhat impeded.  

The lower photoelectrochemical properties of LSFCO and IrRuOx compared with the bare cell 
at potentials more negative than −0.5 V in the photodiode representation mode may probably be 
related to a strong adsorption of the hydroxyl species at these potentials. A strong adsorption of 
hydroxyls may hinder the release of the oxygen molecules. As an example, in conventional 
electrolysis, due to these strong adsorption characteristics, IrRuOx is less effective in alkaline media 
compared to acidic environments. In the present case, such characteristics may cause some 
interference to the photoelectrochemical conversion.  

The formation of active Ni1–xFexOOH surface states possibly occurs during the preliminary 
photoelectrode treatment in KOH and during polarisation (this should in principle occur between 
0.4 and 0.5 V vs. reversible hydrogen electrode (RHE) [63,68,69]). If the overpotential at CuO is not 
very large upon the bias application, the anode experiences potentials between 0 and 1.2 V vs. RHE. 
We have recorded an increase in the activation effect at high bias potentials, i.e., at more negative cell 
voltages in the photodiode representation. This evidence points to the formation of the active 
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Ni1–xFexOOH surface states as promoting species. However, it is also important to point out that a 
small promoting effect also appears at the zero bias. 

The hematite photoanode, the NiFeOx co-catalyst dispersion over the hematite and the 
transparent membrane have been designed to allow that the high wavelength range of the light 
irradiation can reach the photocathode, thus avoiding that the photocathode limits the behavior of 
the device. This is confirmed by the results in Figure 3 obtained with the same photocathode and 
different photoanodes (different co-catalysts). If the photocathode would limit the device 
performance in the present case [70–72], the photocurrent–voltage curves would not be sensitive to 
the changes in the photoanode. 

The loading of the co-catalyst has been optimised, as reported in Figure 4, to achieve a trade-off 
between the enhancement of the water oxidation process and the need to assure sufficient 
transparency in the higher wavelength range for light reaching the cathode semiconductor through 
the transparent membrane. The most appropriate loading for the co-catalyst was 12 µg cm−2 with an 
enthalpy efficiency of 0.528% in the bias-assisted region at −0.6 V. 

 

Figure 4. Photocurrent vs. voltage for 3 PECs containing different amounts of the NiFeOx co-catalyst 
at the anode (6, 12, 24 µg cm−2). 

Figure 5 shows both the enthalpy and throughput efficiency of the most performing PECs based 
on the NiFeOx co-catalyst (12 µg cm−2), calculated according to the equations in Section 3.5. The 
enthalpy efficiency (black line) reached the maximum value in the bias-assisted region between −0.6 
V and −0.8 V. The throughput efficiency increased as the bias voltage became larger, due to an 
enhancement of the overall photocurrent at high bias voltages, as shown in the inset of Figure 5. 
Photocurrents are similar to those recently reported for advanced core–shell nanostructure-based 
cells [73]. The throughput efficiency calculation is very similar to the efficiency determination of a 
conventional (dark) electrolyzer, where the total energy output is divided by the total energy input. 
The best throughput efficiency recorded at the reversible potential was 1.7%. 
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Figure 5. Enthalpy and throughput efficiency of the most performing PEC based on the NiFeOx 
co-catalyst; polarization behavior of the cell up to −1.5 V in the inset of the figure. 

2.3. Morphological Characterisation 

SEM images of the most performing photoanode-based PECs were recorded after the 
polarization measurements and shown at two different magnifications in Figure 6a,b. At a higher 
magnification (Figure 6b), the Fe2O3 nanocolumns are visible in grey, whereas the NiFeOx 
co-catalyst is located as agglomerates of round nanoparticles in some regions and are highlighted as 
white particles in the low magnification image as identified by the energy dispersive analysis (EDX). 
The EDX analysis is reported in Figure S3 (Supplementary Materials). The arrows in the 
high-magnification micrograph indicate co-catalyst clusters corresponding to the bright particles in 
the low-magnification image. The homogeneous ionomer coating over the photoanode forms a 
patina-like layer that attenuates the contours of the hematite nanorods.  

 
Figure 6. SEM image of the most performing photoanode after the polarization tests at (a) a low and 
(b) a high magnification; arrows indicate co-catalyst clusters corresponding to the bright particles in 
the low-magnification image. 

(b) (a) 
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The overall photoanode structure is thus consisting of three components with specific roles, i.e., 
the semiconducting hematite photoanode for light harvesting and charge separation through the 
space charge layer, the NiFeOx co-catalyst, addressing the enhancement of the oxygen evolution 
kinetics at the interface and the hydrophilic ionomer to form an extended polymer electrolyte region 
at the interface and provide the reacting species (water molecules). Of course, the morphology of this 
composite structure can be further improved to favour a better interface and distribution of the 
components; however, the present configuration gives evidence of an enhanced water splitting in a 
complete cell device of practical interest. 

3. Materials and Methods 

3.1. Synthesis of Photoelectrodes 

3.1.1. Synthesis of (110) Oriented Hematite Nanorods 

The deposition of nanocolumns synthesized by a hydrothermal bath deposition is one of the 
most widespread procedures for the fabrication of hematite electrodes [74]. Different synthetic 
conditions have been explored based on a literature review analyzing the photoresponses of the 
resulting hematite films. 

The following synthetic procedure was selected for achieving the maximum photocurrent and 
minimizing the use of material and energy resources: vertically aligned FTOs, with adhesive tape on 
one side (to permit the electric contact), were placed in a closed glass reactor containing an aqueous 
solution consisting of 0.15 M FeCl3 and 1 M NaNO3. A chemical bath deposition was obtained by 
heating the reactor at 100 °C for 6 h. Afterwards, the electrodes were washed with water and dried at 
room temperature and the formation of FeOOH/FTO was achieved. Thus, the electrode was 
thermally annealed at 650 °C for 1 h in air in order to obtain α-Fe2O3/FTO.  

3.1.2. Hematite Modification with Tin and Phosphorus 

The Sn modification of hematite consisted of placing the hematite/FTO electrodes in an oven at 
750 °C for 15 min. After that, the electrodes were cooled down to room temperature. The 
modification with P was achieved by dip-coating the Sn-modified electrodes in a 0.1 mol·L−1 
NH4NaHPO4 (99%, Sigma-Aldrich, St. Louis, MI, USA) aqueous solution. The electrode was kept in 
the solution for 1 min using rates for both immersion and withdrawal of 450 mm/min. The coated 
electrodes were dried at 100 °C for 30 min and then they were thermally annealed at 450 °C for 30 
min in air. 

The occurrence of P and Sn doping in the final photoanodes was confirmed by an EDX analysis 
(Figure S3 in Supplementary Materials) 

3.1.3. Synthesis of Cupric Oxide 

The optimized copper oxide procedure is based on some previous works [12,75] and detailed as 
reported: an electrochemical bath was composed by a 0.1 M Cu(NO3)2 and 3 M lactic acid aqueous 
solution adjusted to pH 5 with NaOH. The FTO substrate, with an adhesive tape on one side, was 
placed as a working and sensing electrode and a Pt wire as a counter electrode. The 
electrodeposition was performed at −0.3 V vs. an Ag/AgCl (3M) reference electrode for 1 h with the 
consequent formation of Cu/FTO. Thus, a chemical oxidation was performed by immersing for 3 
min Cu/FTO in a 0.125 M (NH4)2S2O8 and 2.5 M NaOH aqueous solution. The electrode was washed 
with water and ethanol and Cu(OH)2/FTO was obtained. Finally, CuO/FTO was achieved by a 
thermal treatment of the electrodes at 450 °C for 1 h in air. 

3.1.4. Synthesis of co-Catalysts 

The NiFeOx co-catalyst was prepared according to the synthetic procedure referred to as the 
oxalate method [76]. Ni and Fe nitrates were dissolved in distilled water and mixed with a solution 
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of oxalic acid neutralized at pH 6.5 with NaOH. The molar ratio between the chelating agent and the 
metal was 10. A complex was formed and then treated at 80 °C with H2O2 in order to obtain a 
precipitate. After filtering, washing and drying at 100 °C for 24 h, the powder was then calcined at 
350 °C for 120 min with the subsequent formation of NiFeOx. The formed oxide was characterized in 
terms of the chemical and structure properties. In order to investigate the behavior of the 
cost-effective NiFeOx catalytic enhancer, the benchmark IrRuOx and LSFCO catalysts for the 
alkaline environment were also used.  

The IrRuOx electrocatalyst was synthesized by a modified Adams fusion method [77]. The 
metal precursors (IrCl4·xH2O or RuCl3·xH2O, StremChemicals, Newburyport, MA, United States) 
were added to isopropanol to obtain a total metal concentration of 0.08 M. This solution was 
magnetically stirred at room temperature for 1 h to ensure the complete dissolution of the 
precursors, followed by the addition of NaNO3, previously ground. The slurry was heated at 90 °C 
in air until becoming completely dry. The dry salt was then placed in a furnace and treated at 500 °C 
for 30 min. The oxide formed from the fused salts was washed with distilled water to remove the 
excess of salts, filtered and dried in an oven at 80 °C overnight. To completely remove the sodium 
impurities, a pre-leaching procedure in HClO4 (0.1 M, 80 °C, 1 h) was adopted.  

The commercial LSFCO (La0.6Sr0.4Fe0.8CoO3) was purchased from the Praxair company 
(Manchester, CT, USA). The catalytic inks were prepared by sonicating for half an hour the 
co-catalyst powder with 2-propanol in order to obtain a 2 mg mL−1 dispersion. After that, 12 µg cm−2 
co-catalyst loadings were collected and deposited onto the doped FTO/Fe2O3 electrode with a doctor 
blade technique. Thus, the electrodes were subjected to the same heat treatment used for the 
modification with P (450 °C for 1 h) before the ionomer deposition. 

3.1.5. Membrane and Ionomer  

An FAA-3-50 (50 mm thickness) membrane was used after the ion exchange in KOH [78]. This 
membrane thickness was selected as a trade-off between low resistance and proper mechanical 
handling. The conductivity of this 50 µm membrane [78] is sufficiently high to keep ohmic losses 
associated with ion transport in the polymer electrolyte separator within 1 mV in the range of the 
recorded current densities. The ionomer dispersion was prepared by solubilizing the received solid 
ionomer powder (FAA3-shredded film) in a mixture of solvents. An alcoholic solution of n-propanol 
and ethanol (1:1 wt) was used for this purpose and the FAA3 ionomer was solubilized at room 
temperature under stirring to have a ~5 wt % dispersion. 

3.2. Assembly of the Cell 

In the assembled cell, the photoelectrodes had an area of 1 × 1 cm2. A Fumasep membrane 
(FumaTech, Bietigheim-Bissingen, Germany), based on a polysulfone backbone with quaternary 
ammonium side chain groups provided in the bromide form, was first treated in NaCl for 72 h and 
then was subjected to an anion exchange process in a 0.5 M NaOH aqueous solution for 24 h before 
assembly. The polymeric membrane area was about 1.1 × 1.1 cm2. The ionomer dispersion, made of 
the same polymer formulation of the membrane, was deposited on the electrode surface to extend 
the interfacial region, to favour adhesion to the membrane and to increase the stability of the 
photoelectrodes. PA, PC and the hydrated membrane were thus brought into contact according to 
the following arrangement: photoanode/ionomer/membrane/ionomer/photocathode. The water will 
be kept inside the cell by the hydrated membrane and by adding a drop of water in the active area of 
photoelectrodes before assembly. The backing side of the hematite electrode was covered with black 
insulating tape, with a central hole with a well-defined area of 0.25 cm2. The electrodes and 
membrane used for the selected tandem configuration before the cell assembly are shown in Figure 
7. 
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Figure 7. Fe2O3-based photoanode (a), solid polymeric membrane (b) and CuO-based photocathode 
(c). 

Finally, two clamps located at each side of the cell were used to secure and keep pressed the 
overall device. The device was placed in a sample holder (horizontal or vertical) and illuminated 
from the hematite electrode glass substrate thanks to a solar simulator (Oriel in the horizontal 
configuration or Osram in the vertical configuration) to provide an incident power density for the 
light irradiation depending on the solar simulator and the specific arrangement of the cell set-up. In 
the experiments with the solar simulator reported here, the cell was placed horizontally and 
illuminated by the solar simulator from the FTO photoanode back contact by an incident power 
density of 92 mW cm−2, as measured using a calibrated photovoltaic cell. 

The hematite photoanode was investigated with or without co-catalysts together with the 
copper oxide photocathode for “water splitting” in the tandem cell. 

3.3. Physicochemical Characterization 

X-ray diffraction (XRD) patterns for powder catalysts were recorded with an X’Pert 3710 X-Ray 
(Philips, Eindhoven, Netherlands) diffractometer using a Cu-Kα source operating at 40 kV and 20 
mA. The peak profiles of the X-ray reflections were obtained by applying the Marquardt algorithm 
to calculate the crystallite size by the Debye–Scherrer equation. The instrumental broadening was 
determined by using a standard platinum sample. 

The transmission electron microscopy (TEM) analysis was made by first dispersing the catalyst 
powder (NiFeOx or IrRuOx or LSFCO) in isopropyl alcohol. A few drops of these suspensions were 
deposited on carbon film-coated Cu grids and analyzed with a CM12 microscope (FEI, Eindhoven, 
The Netherlands).  

The morphology of the most performing photoanode was studied by scanning electron 
microscopy (SEM) with an FEI-XL 30 SEM microscope (Hillsboro, OR, USA). 

3.4. Electrochemical Tests 

The light source in the photoelectrochemical measurement was about 1 sun illumination 
according to the specific arrangement used (92 mW cm−2) and the cell was illuminated either in the 
horizontal or vertical mode according to the type of experiment planned. According to the main 
characteristics, a down-selection of the most promising formulations and synthesis procedures for 
the cell components was carried out.  

Polarization tests were carried out by sweeping the potential between the open circuit potential 
(OCP) value up to a bias of −1.5 V. Some graphs were reported in the region of interest (avoiding 
drastic conditions for degradation) up to −0.6 V (bias-controlled region) and recording the current 
density of the PEC was first in the dark and thereafter under illumination. The sign of the recorded 
photocurrent and the potential bias are reported as negative (reverse current and applied bias) as in 
the case of the photodiode mode. When a spontaneous photovoltage is recorded, this takes the 
positive sign like in a photodiode. The photocurrent measured between the OCP and the short 
circuit (i.e., 0 V) is driven by the illumination only (spontaneous photocurrent), and in this region the 



Catalysts 2020, 10, 525 12 of 17 

 

potential is positive. On the other hand, in the negative potential region, an external bias-assisted 
photocurrent occurs. 

The registration of the H2 ionic current at the cathode outlet of a specifically designed 4 cm2 
tandem photoelectrolysis cell was carried out using a mass spectrometer (ThermoStar™ GSD320), 
under dark and light conditions (Figure S4). 

A short-term durability test was carried out to preliminarily validate the photoelectrolysis cell 
stability. In this experiment, the cell was fully immersed in water (to allow for proper hydration 
without the need to refill water) and illuminated by a solar lamp (Figure S5).  

3.5. Efficiency of the PEC 

The ranges of the wavelengths of the solar spectrum that are in theory absorbed by the 
photoanode and photocathode along with the fraction of wavelengths in the near infrared region 
that are not absorbed by this tandem cell are shown in Figure S6 (Supplementary Materials). 
Accordingly, it is observed that both hematite and CuO contribute to the conversion efficiency to a 
relevant extent, being that their respective fractions of absorbed light are very similar. 

The efficiency of the complete cell represents an important parameter to drive the selection of 
the materials and components. Both enthalpy and Gibbs energy-based efficiency are determined 
from the ratio between the net power output and the power of incident light. The net power output 
in the case of a spontaneous photovoltage-assisted process is determined from the photocurrent 
multiplied by the reversible potential, which is 1.229 V in the case of the Gibbs energy-based 
efficiency or multiplied by the thermoneutral potential, 1.48 V. In the case of the enthalpy efficiency, 
the latter corresponds to the hydrogen production rate multiplied by the standard enthalpy of 
combustion (high heating value (HHV)) assuming a faradaic efficiency of 100%. The Gibbs 
energy-based efficiency does not take into consideration as a useful product the reversible heat 
(TΔS) associated with the combustion of the produced hydrogen and oxygen, e.g., in a combined 
heat and power unit. In other words, the Gibbs energy efficiency is based on the useful work and not 
on the total energy (reaction enthalpy). 

Otherwise, in the case of applying an external bias, the “net power output” is the difference 
between the maximum or total electric power available from the H2 produced and the power 
supplied by the external source. Beside these methods, to compare the efficiency of the 
photoelectrolysis cells to that of conventional electrolyzers [79,80] combined to photovoltaic plants, 
the efficiency can also be defined as the ratio between the power output (HHV of the produced 
hydrogen per unit of time) and the overall power input (solar + electric) supplied by an external 
source. This is usually reported as “throughput efficiency”. Accordingly, different solar-to-hydrogen 
efficiency definitions are used in this field. These are reported below in Equations (3)–(5), assuming a 
100% faradaic efficiency for hydrogen generation and used accordingly to provide a complete 
picture: 

Enthalpy efficiency: 

η = Ip × (ΔH/nF − |Ebias|)/Pin = Ip × (Etn − |Ebias|)/Pin (3) 

Gibbs energy efficiency: 

η = Ip × (ΔG/nF − |Ebias|)/Pin = Ip × (Erev − |Ebias|)/Pin (4) 

Throughput efficiency: 

η = Ip × (ΔH/nF)/(Pin + Ip × |Ebias|) = Ip × Etn/(Pin + Ip × |Ebias|) (5) 

where Etn = 1.48 V, Erev = 1.23 V, Ebias ≡ V, Pin ≡ mW cm−2, and Ip = I light − I dark ≡ mA cm−2. 

4. Conclusions 

Photoelectrochemical cells (PECs), based on a solid electrolyte membrane separating the 
Fe2O3-based photoanode and CuO-based photocathode, were investigated in order to increase the 
solar to hydrogen efficiency. The concept of tandem cells shows how to capture a significant portion 
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of the incident solar spectrum and it is based on the choice of semiconductors with appropriate 
energy band gaps. The oxygen evolution reaction, occurring at the photoanode, represents the rate 
determining step of the entire photoelectrochemical water splitting. Thus, the effect of different 
co-catalysts on the performance of hematite electrodes with suitable mass loading (12 µg cm−2) was 
studied. The addition of NiFeOx to the hematite photoelectrode allowed to improve the 
performance of the cost-effective PECs compared with IrRuOx and LSFCO, the benchmark 
co-catalysts. The maximum value for the enthalpy efficiency was 0.53%, recorded in the bias-assisted 
region (−0.6 V), whereas a value of 1.7 % was achieved for the throughput efficiency at the reversible 
potential bias, assuming a 100% faradaic efficiency for hydrogen generation. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/10/5/525/s1, Figure 
S1: XRD pattern for a hematite/FTO electrode calcined at 650 °C for 1 h, Figure S2: Polarisation curves in an 
extended window under illumination and in the dark for the co-catalyst-based cells reported in Figure 3, Figure 
S3: EDX analysis of the outer NiFeOx-coated hematite photoanode surface, Figure S4: Registration of H2 ionic 
current at the cathode outlet of a specifically designed 4 cm2 tandem photoelectrolysis cell using a mass 
spectrometer, under dark and light conditions, Figure S5: Short-term durability study of a tandem 0.25 cm2 

photoelectrolysis cell fully immersed in water and illuminated by a solar lamp, Figure S6: AM1.5 spectrum 
utilisation by 2.1 eV bandgap of doped Fe2O3 (blue shading) and by 1.2 eV bandgap CuO underneath (green 
shading). 
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