460 research outputs found

    Survival of infants with spina bifida and the role of maternal prepregnancy body mass index

    Get PDF
    Objective: To investigate first-year survival of infants born with spina bifida, and examine the association of maternal prepregnancy body mass index (BMI) with infant mortality. Methods: This is a retrospective cohort study of 1,533 liveborn infants with nonsyndromic spina bifida with estimated dates of delivery from 1998 to 2011 whose mothers were eligible for the National Birth Defects Prevention Study (NBDPS). NBDPS data were linked to death records to conduct survival analyses. Kaplan–Meier survival functions estimated mortality risk over the first year of life. Cox proportional hazards models estimated hazard ratios (HRs) for maternal prepregnancy BMI categorized as underweight ('18.5), normal (18.5–24.9), overweight (25–29.9), and obese (≥30). Results: Infant mortality risk among infants with spina bifida was (4.4% [3.52, 5.60%]). Infants with multiple co-occurring defects, very preterm delivery, multiple gestation, high-level spina bifida lesions, or non-Hispanic Black mothers had an elevated risk of infant mortality. Maternal prepregnancy underweight and obesity were associated with higher infant mortality (15.7% [7.20, 32.30%] and 5.82% [3.60, 9.35%], respectively). Adjusted HR estimates showed underweight and obese mothers had greater hazard of infant mortality compared to normal weight mothers (HR: 4.5 [1.08, 16.72] and 2.6 [1.36, 8.02], respectively). Conclusion: The overall risk of infant mortality for infants born with spina bifida was lower than most previously reported estimates. Infants born with spina bifida to mothers who were underweight or obese prepregnancy were at higher risk of infant mortality. This study provides additional evidence of the importance of healthy maternal weight prior to pregnancy

    Hamiltonian dynamics and Noether symmetries in Extended Gravity Cosmology

    Full text link
    We discuss the Hamiltonian dynamics for cosmologies coming from Extended Theories of Gravity. In particular, minisuperspace models are taken into account searching for Noether symmetries. The existence of conserved quantities gives selection rule to recover classical behaviors in cosmic evolution according to the so called Hartle criterion, that allows to select correlated regions in the configuration space of dynamical variables. We show that such a statement works for general classes of Extended Theories of Gravity and is conformally preserved. Furthermore, the presence of Noether symmetries allows a straightforward classification of singularities that represent the points where the symmetry is broken. Examples of nonminimally coupled and higher-order models are discussed.Comment: 20 pages, Review paper to appear in EPJ

    Coherent Photoproduction of pi^+ from 3^He

    Full text link
    We have measured the differential cross section for the γ\gamma3^3Heπ+t\rightarrow \pi^+ t reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid 3^3He target. The differential cross sections for the γ\gamma3^3Heπ+t\rightarrow \pi^+ t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.Comment: 11 pages, 16 figure

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Understanding and Measuring the Wellbeing of Carers of People With Dementia

    Get PDF
    Background and Objectives  To determine how the wellbeing of carers of people with dementia is understood and measured in contemporary health research.  Research Design and Methods  A systematic review of reviews was designed, registered with PROSPERO, and then conducted. This focused on systematic reviews of research literature published from 2010 onwards; with the wellbeing of carers of people with dementia being a primary focus. N = 19 studies met the inclusion criteria. Quality appraisal was conducted using the AMSTAR tool (2015). A narrative synthesis was conducted to explore how wellbeing is currently being understood and measured.  Results  Contemporary health research most frequently conceptualizes wellbeing in the context of a loss–deficit model. Current healthcare research has not kept pace with wider discussions surrounding wellbeing which have become both more complex and more sophisticated. Relying on the loss–deficit model limits current research in understanding and measuring the lived experience of carers of people with dementia. There remains need for a clear and consistent measurement of wellbeing.  Discussion and Implications  Without clear consensus, health professionals must be careful when using the term “wellbeing”. To help inform healthcare policy and practice, we offer a starting point for a richer concept of wellbeing in the context of dementia that is multi-faceted to include positive dimensions of caregiving in addition to recognized aspects of burden. Standardized and robust measurements are needed to enhance research and there may be benefit from developing a more mixed, blended approach to measurement

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter
    corecore