2,005 research outputs found
Label-free nanoscopy enabled by coherent imaging with photonic waveguides
SPIE Article-Sharing Policies https://www.spiedigitallibrary.org/article-sharing-policiesIn this project it was found that Fourier ptychographic microscopy can be improved far beyond its conventional limits via waveguide-based optical systems. Extensive in silico studies showed that images obtained on highrefractive index material waveguide chips in conjunction with hyperspectral illumination light and finely designed waveguide geometries can be combined via a modified phase-retrieval algorithm to yield a resolution below 150 nm
Recommended from our members
Super-condenser enables labelfree nanoscopy.
Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines Fourier ptychography with waveguide microscopy to realize a 'super-condenser' featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed SiN waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 m in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval
algorithm two-fold: firstly, the directionality of the illumination wave vector
is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We validate the method via in silico and in vitro experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm
Super-condenser enables labelfree nanoscopy.
Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines coherent imaging techniques with waveguide microscopy to realize a super-condenser featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed Si3N4 waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 μm2 in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval algorithm two-fold: firstly, the directionality of the illumination wave vector is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We test the method in simulations and in experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm. While the generated Fourier ptychography reconstructions are found to be prone to image artefacts, an alternative coherent imaging method, rotating coherent scattering microscopy (ROCS), is found to be more robust against artefacts but with less achievable resolution
Angiographic Findings of the Multicenter Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL)
BACKGROUND: Restenosis remains the major limitation of coronary catheter-based intervention. In small vessels, the amount of neointimal tissue is disproportionately greater than the vessel caliber, resulting in higher restenosis rates. In the Randomized Study With the Sirolimus-Eluting Bx Velocity Balloon-Expandable Stent (RAVEL) trial, approximately 40% of the vessels were small (<2.5 mm). The present study evaluates the relationship between angiographic outcome and vessel diameter for sirolimus-eluting stents.
METHODS AND RESULTS: Patients were randomized to receive either an 18-mm bare metal Bx VELOCITY (BS group, n=118), or a sirolimus-eluting Bx VELOCITY stent (SES group, n=120). Subgroups were stratified into tertiles according to their reference diameter (RD; stratum I, RD 2.84 mm). At 6-month follow-up, the restenosis rate in the SES group was 0% in all strata (versus 35%, 26%, and 20%, respectively, in the BS group). In-stent late loss was 0.01+/-0.25 versus 0.80+/-0.43 mm in stratum I, 0.01+/-0.38 versus 0.88+/-0.57 mm in stratum II, and -0.06+/-0.35 versus 0.74+/-0.57 mm in stratum III (SES versus BS). In SES, the minimal lumen diameter (MLD) remained unchanged (Delta -0.72 to 0.72 mm) in 97% of the lesions and increased (=late gain, DeltaMLD <-0.72 mm) in 3% of the lesions. Multivariate predictors for late loss were treatment allocation (P<0.001) and postprocedural MLD (P= 0.008).
CONCLUSIONS: Sirolimus-eluting stents prevent neointimal proliferation and late lumen loss irrespective of the vessel diameter. The classic inverse relationship between vessel diameter and restenosis rate was seen in the bare stent group but not in the sirolimus-eluting stent group
CAGIRE: a wide-field NIR imager for the COLIBRI 1.3 meter robotic telescope
The use of high energy transients such as Gamma Ray Bursts (GRBs) as probes
of the distant universe relies on the close collaboration between space and
ground facilities. In this context, the Sino-French mission SVOM has been
designed to combine a space and a ground segment and to make the most of their
synergy. On the ground, the 1.3 meter robotic telescope COLIBRI, jointly
developed by France and Mexico, will quickly point the sources detected by the
space hard X-ray imager ECLAIRs, in order to detect and localise their
visible/NIR counterpart and alert large telescopes in minutes. COLIBRI is
equipped with two visible cameras, called DDRAGO-blue and DDRAGO-red, and an
infrared camera, called CAGIRE, designed for the study of high redshift GRBs
candidates. Being a low-noise NIR camera mounted at the focus of an
alt-azimutal robotic telescope imposes specific requirements on CAGIRE. We
describe here the main characteristics of the camera: its optical, mechanical
and electronics architecture, the ALFA detector, and the operation of the
camera on the telescope. The instrument description is completed by three
sections presenting the calibration strategy, an image simulator incorporating
known detector effects, and the automatic reduction software for the ramps
acquired by the detector. This paper aims at providing an overview of the
instrument before its installation on the telescope.Comment: Accepted by Experimental Astronom
Test Report of NISP dedicated test activities during the CSL campaign - DCU-SCE Communication issue
A complete analysis of the communication issue in the science interface observed during the NISP CSL test campaig
Analysis of Endocytic Pathways in Drosophila Cells Reveals a Conserved Role for GBF1 in Internalization via GEECs
In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs) forms GEECs (GPI-AP enriched early endosomal compartments) via an Arf1- and Cdc42-mediated, dynamin independent mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes). Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A, implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion
Suitability of external controls for drug evaluation in Duchenne muscular dystrophy
OBJECTIVE: To evaluate the suitability of real-world data (RWD) and natural history data (NHD) for use as external controls in drug evaluations for ambulatory Duchenne muscular dystrophy (DMD). METHODS: The consistency of changes in the 6-minute walk distance (Δ6MWD) was assessed across multiple clinical trial placebo arms and sources of NHD/RWD. Six placebo arms reporting 48-week Δ6MWD were identified via literature review and represented 4 sets of inclusion/exclusion criteria (n = 383 patients in total). Five sources of RWD/NHD were contributed by Universitaire Ziekenhuizen Leuven, DMD Italian Group, The Cooperative International Neuromuscular Research Group, ImagingDMD, and the PRO-DMD-01 study (n = 430 patients, in total). Mean Δ6MWD was compared between each placebo arm and RWD/NHD source after subjecting the latter to the inclusion/exclusion criteria of the trial for baseline age, ambulatory function, and steroid use. Baseline covariate adjustment was investigated in a subset of patients with available data. RESULTS: Analyses included ∼1,200 patient-years of follow-up. Differences in mean Δ6MWD between trial placebo arms and RWD/NHD cohorts ranged from -19.4 m (i.e., better outcomes in RWD/NHD) to 19.5 m (i.e., worse outcomes in RWD/NHD) and were not statistically significant before or after covariate adjustment. CONCLUSIONS: We found that Δ6MWD was consistent between placebo arms and RWD/NHD subjected to equivalent inclusion/exclusion criteria. No evidence for systematic bias was detected. These findings are encouraging for the use of RWD/NHD to augment, or possibly replace, placebo controls in DMD trials. Multi-institution collaboration through the Collaborative Trajectory Analysis Project rendered this study feasible
Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): First continental flora and fauna including mammals from the Middle Jurassic of Africa
We report the discovery in Mesozoic continental “red beds” of Anoual Syncline, Morocco, of the new Guelb el Ahmar (GEA) fossiliferous sites in the Bathonian Anoual Formation. They produced one of the richest continental biotic assemblages from the Jurassic of Gondwana, including plants, invertebrates and vertebrates. Both the sedimentological facies and the biotic assemblage indicate a lacustrine depositional environment. The flora is represented by tree trunks (three families), pollen (13 species, five major clades) and charophytes. It suggests local forests and humid (non-arid) conditions. The vertebrate fauna is dominated by microvertebrates recovered by screening–washing. It is rich and diverse, with at least 29 species of all major groups (osteichthyans, lissamphibians, chelonians, diapsids, mammals), except chondrichthyans. It includes the first mammals discovered in the Middle Jurassic of Arabo-Africa. The GEA sites yielded some of the earliest known representatives of osteoglossiform fishes, albanerpetontid and caudate amphibians, squamates (scincomorphans, anguimorphan), cladotherian mammals, and likely choristoderes. The choristoderes, if confirmed, are the first found in Gondwana, the albanerpetontid and caudatan amphibians are among the very few known in Gondwana, and the anguimorph lizard is the first known from the Mesozoic of Gondwana. Mammals (Amphitheriida, cf. Dryolestida) remain poorly known, but are the earliest cladotherians known in Gondwana. The GEA biotic assemblage is characterized by the presence of Pangean and Laurasian (especially European) taxa, and quasi absence of Gondwanan taxa. The paleobiogeographical analysis suggests either a major fossil bias in Gondwana during the Middle Jurassic, and an overall vicariant Pangean context for the GEA assemblage, or alternatively, noticeable Laurasian (European) affinities and North-South dispersals. The close resemblance between the Bathonian faunas of GEA and Britain is remarkable, even in a Pangean context. The similarity between the local Anoual Syncline Guelb el Ahmar and Ksar Metlili faunas raises questions on the ?Berriasian age of the latter
Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an
Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
- …