951 research outputs found

    Oxidoreductase and Chaperone Activities Co-opted by the Nonenveloped Polyomaviruses during Entry.

    Full text link
    Nonenveloped viruses lack a lipid surface that would permit membrane fusion events and direct access to the cytosol of a host cell. Instead these viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. This thesis work describes the mechanism for membrane penetration by polyomaviruses (Pys), a family of viruses that can cause several devastating pathologies in immunocompromised individuals. Pys are endocytosed and traffic to the endoplasmic reticulum (ER) where they must cross the ER membrane to cause infection. We find that multiple ER-resident proteins normally involved in protein folding, called PDI, ERp57 and ERp72 are important for infection of murine Py. In vitro assays reveal that a subset of PDI proteins act coordinately to disrupt capsid disulfide bonds and induce important conformational changes. This activation step drives ER membrane engagement where the virus can be recognized by additional cellular factors normally involved in retro-translocating misfolded ER proteins to the cytosol for degradation. Our research on another model Py, SV40, elucidates the function of two ER membrane proteins (DnaJB14 and DnaJB12) that facilitate this stage of membrane penetration. We demonstrate that DnaJB14 (B14) and DnaJB12 (B12) are part of a large protein complex that dynamically reorganizes into discrete foci within the ER membrane upon encountering SV40. Additionally, B14-B12 promote infection by recruiting multiple cytosolic chaperones to the site of membrane penetration. Specifically, we identify SGTA as one chaperone hijacked by SV40 for completing ER-to-cytosol transport. SGTA can physically engage SV40 in cells during entry and interact directly in vitro. Thus, this research supports a model whereby a nonenveloped virus co-opts several protein quality control systems for membrane penetration.PHDCellular & Molecular BiologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107229/1/walcz_1.pd

    N-(n-Dec­yl)-4-nitro­aniline

    Get PDF
    N-(n-Dec­yl)-4-nitro­aniline, C16H26N2O2, crystallizes with two essentially planar mol­ecules in the asymmetric unit. The decyl chains are fully extended in an anti conformation. The mol­ecules pack in planar layers, within which mol­ecules are linked into chains by two approximately linear N—H⋯O hydrogen bonds between the amine N atom and one O atom of the nitro group of an adjacent mol­ecule. These mol­ecular chains propagate via inter­leaving of the decyl chains to form the two dimensional sheets. The sheets are associated exclusively via non-bonded contacts. The structure has features in common with those of other N-alkyl-4-nitro­anilines, but also subtle differences in packing

    Endoplasmic Reticulum-Dependent Redox Reactions Control Endoplasmic Reticulum-Associated Degradation and Pathogen Entry

    Full text link
    Abstract Significance: Protein misfolding within the endoplasmic reticulum (ER) is managed by an ER quality control system that retro-translocates aberrant proteins into the cytosol for proteasomal destruction. This process, known as ER-associated degradation, utilizes the action of ER redox enzymes to accommodate the disulfide-bonded nature of misfolded proteins. Strikingly, various pathogenic viruses and toxins co-opt these redox components to reach the cytosol during entry. These redox factors thus regulate critical cellular homeostasis and host?pathogen interactions. Recent Advances: Recent studies identify specific members of the protein disulfide isomerase (PDI) family, which use their chaperone and catalytic activities, in engaging both misfolded ER proteins and pathogens. Critical Issues: The precise molecular mechanism by which a dedicated PDI family member disrupts the disulfide bonds in the misfolded ER proteins and pathogens, as well as how they act to unfold these substrates to promote their ER-to-cytosol membrane transport, remain poorly characterized. Future Directions: How PDI family members distinguish folded versus misfolded ER substrates remains enigmatic. What physical characteristics surrounding a substrate's disulfide bond instruct PDI that it is mispaired or native? For the pathogens, as their disulfide bonds normally serve a critical role in providing physical support, what conformational changes experienced in the host enable their disulfide bonds to be disrupted? A combination of more rigorous biochemical and high-resolution structural studies should begin to address these questions. Antioxid. Redox Signal. 16, 809?818.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98492/1/ars%2E2011%2E4425.pd

    Computation of Steady-State Probability Distributions in Stochastic Models of Cellular Networks

    Get PDF
    Cellular processes are “noisy”. In each cell, concentrations of molecules are subject to random fluctuations due to the small numbers of these molecules and to environmental perturbations. While noise varies with time, it is often measured at steady state, for example by flow cytometry. When interrogating aspects of a cellular network by such steady-state measurements of network components, a key need is to develop efficient methods to simulate and compute these distributions. We describe innovations in stochastic modeling coupled with approaches to this computational challenge: first, an approach to modeling intrinsic noise via solution of the chemical master equation, and second, a convolution technique to account for contributions of extrinsic noise. We show how these techniques can be combined in a streamlined procedure for evaluation of different sources of variability in a biochemical network. Evaluation and illustrations are given in analysis of two well-characterized synthetic gene circuits, as well as a signaling network underlying the mammalian cell cycle entry

    IFT Proteins Accumulate during Cell Division and Localize to the Cleavage Furrow in Chlamydomonas

    Get PDF
    Intraflagellar transport (IFT) proteins are well established as conserved mediators of flagellum/cilium assembly and disassembly. However, data has begun to accumulate in support of IFT protein involvement in other processes elsewhere in the cell. Here, we used synchronous cultures of Chlamydomonas to investigate the temporal patterns of accumulation and localization of IFT proteins during the cell cycle. Their mRNAs showed periodic expression that peaked during S and M phase (S/M). Unlike most proteins that are synthesized continuously during G1 phase, IFT27 and IFT46 levels were found to increase only during S/M phase. During cell division, IFT27, IFT46, IFT72, and IFT139 re-localized from the flagella and basal bodies to the cleavage furrow. IFT27 was further shown to be associated with membrane vesicles in this region. This localization pattern suggests a role for IFT in cell division

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe

    Search for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark. Associated production of a leptoquark and a tau lepton is considered, leading to a final state with a bottom quark and two tau leptons. The search uses proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 35.9 fb(-1). Upper limits are set at 95% confidence level on the production cross section of the third-generation scalar leptoquarks as a function of their mass. From a comparison of the results with the theoretical predictions, a third-generation scalar leptoquark decaying to a tau lepton and a bottom quark, assuming unit Yukawa coupling (lambda), is excluded for masses below 740 GeV. Limits are also set on lambda of the hypothesized leptoquark as a function of its mass. Above lambda = 1.4, this result provides the best upper limit on the mass of a third-generation scalar leptoquark decaying to a tau lepton and a bottom quark.Peer reviewe

    Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at root s=13 TeV

    Get PDF
    This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb(-1). The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7TeV respectively.Peer reviewe

    Measurement of differential cross sections in the kinematic angular variable phi* for inclusive Z boson production in pp collisions at root s=8 TeV

    Get PDF
    Measurements of differential cross sections d sigma/d phi* and double-differential cross sections d(2)sigma/ld phi*d/y/ for inclusive Z boson production are presented using the dielectron and dimuon final states. The kinematic observable phi* correlates with the dilepton transverse momentum but has better resolution, and y is the dilepton rapidity. The analysis is based on data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb(-1). The normalised cross section (1/sigma) d sigma/d phi*, within the fiducial kinematic region, is measured with a precision of better than 0.5% for phi* <1. The measurements are compared to theoretical predictions and they agree, typically, within few percent.Peer reviewe
    corecore