54 research outputs found

    How Large Immobile Particles Impact Sediment Transport and Bed Morphology in Gravel Bed Rivers

    Get PDF
    Large particles can be deposited in natural stream channels as a result of failed erosion protection measures or geological deposits. The impacts these large particles have on the natural systems have been studied, however the previous literature that has been completed either has a very narrow scope applicable only to alpine rivers or are simplified and do not fully capture the processes that occur in a natural channel system. Additionally, the results often contradict each other, and give an unclear understanding of the effects these large particles have on bed morphology and sediment transport. This thesis utilizes a laboratory experiment to evaluate the effects that varying densities of large immobile particles in a gravel-bed channel have on sediment transport and bed morphology. The objective of this study is to gain further understanding and to consolidate existing literature to provide a more holistic overview of the effects of these large particles on a channel bed. It was expected that large immobile particles would cause an increase in channel roughness, and that the impacts to sediment transport and bed morphology would reflect this. The laboratory experiment consisted of 5 test cases with varying densities of large immobile particles, and one base case with no large particles present. In each case, the flume bed was composed of a poorly sorted gravel mixture with a bi-modal distribution of sand and gravel meant to be representative of a natural gravel-bed channel. The large particles were sized to be representative of common engineering principles by applying a factor of safety to a minimum stable particle size. Each experimental case consisted of a single hydrograph with continuous sediment input scaled to the flow rate. The results of the test cases and the base case proved that relating the large particle density to an increase in channel roughness was too simplistic to explain the trends found within this study. At low densities of large immobile particles, the transported material and the bed material both became coarser. At medium densities of large immobile particles, the bed material size and erosion reached a maximum, and the system also approached equal mobility. Finally, at high densities of large immobile particles, the size of transported material and bed material sizes were similar to that of the base case, and the sediment transport also had the strongest clockwise hysteresis trend. These results indicate the difficult of relating large immobile particle density to channel roughness to explain the effects on sediment transport and bed morphology. In an effort to provide a more holistic explanation, and to consolidate the existing lit- erature, a more complex explanation was developed using the findings of previous research and relating it to the results found within this study. This complex model is made up of 3 main points: 1. Isolated large immobile particles create localized areas of increased erosive forces, and localized protected areas (Brayshaw et al., 1983). 2. At a narrow range of large immobile particle spacings, flow structures build upon each other and amplify their erosive forces (Tan and Curran, 2012). 3. Densely spaced large immobile particles causes high energy skimming flow that is able to create powerful eddies in gaps between the large particles (Hassan and Reid, 1990). This complex model explains the trends and results found within this study. Addi- tionally, the results of this research were used to form the framework for predicting or understanding the impacts to a natural channel system caused by the introduction of large immobile material. Finally, the results of this study can be used to further research and develop design criteria for engineered in-channel structures to remedy imbalanced channel processes

    Adverse childhood experiences, epigenetics and telomere length variation in childhood and beyond: a systematic review of the literature

    Get PDF
    A systematic review following PRISMA guidelines was conducted to answer the question: What epigenetic, telomeric and associated biological changes are associated with exposure to adverse childhood experiences (ACEs) in the under 12s? Using PRISMA guidelines, appropriate databases were searched. 190 papers were returned with 38 articles fully reviewed. Articles were each independently quality rated by two authors using the Crowe Critical Appraisal Tool and data were extracted. Of the 38 articles, 23 were rated as very high quality. Most study participants were adults (n = 7769) with n = 727 child participants. Only seven of the very/high-quality studies were prospective and involved children. Methylation was the most studied method of epigenetic modification. There is some evidence supporting epigenetic modification of certain markers in participants exposed to ACEs measured in adulthood. Research is lacking on non-coding aspects of the epigenome and on coding aspects other than DNA methylation. There is some evidence of a more powerful effect on telomere length if physical neglect was involved. Much further work is required to model biological and psychological effects of epigenetic changes during childhood using prospective study designs. The effect of ACEs on the cellular ageing process during childhood is inadequately investigated and relies solely on measure of telomere length. Future research suggestions are proposed

    Diminished Neural and Cognitive Responses to Facial Expressions of Disgust in Patients with Psoriasis: A Functional Magnetic Resonance Imaging Study

    Get PDF
    Psoriasis produces significant psychosocial disability; however, little is understood about the neurocognitive mechanisms that mediate the adverse consequences of the social stigma associated with visible skin lesions, such as disgusted facial expressions of others. Both the feeling of disgust and the observation of disgust in others are known to activate the insula cortex. We investigated whether the social impact of psoriasis is associated with altered cognitive processing of disgust using (i) a covert recognition of faces task conducted using functional magnetic resonance imaging (fMRI) and (ii) the facial expression recognition task (FERT), a decision-making task, conducted outside the scanner to assess the ability to recognize overtly different intensities of disgust. Thirteen right-handed male patients with psoriasis and 13 age-matched male controls were included. In the fMRI study, psoriasis patients had significantly (P<0.005) smaller signal responses to disgusted faces in the bilateral insular cortex compared with healthy controls. These data were corroborated by FERT, in that patients were less able than controls to identify all intensities of disgust tested. We hypothesize that patients with psoriasis, in this case male patients, develop a coping mechanism to protect them from stressful emotional responses by blocking the processing of disgusted facial expressions

    Riparian Plant Litter Quality Increases With Latitude

    Get PDF
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce ‘syndromes’ resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams

    Riparian plant litter quality increases with latitude

    Get PDF
    Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107 degrees) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce 'syndromes' resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen: phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.We thank the many assistants who helped with field work (Ana Chara-Serna, Francisco Correa-Araneda, Juliana Franca, Lina Giraldo, Stephanie Harper, Samuel Kariuki, Sylvain Lamothe, Lily Ng, Marcus Schindler, etc.), Cristina Grela Docal for helping with leaf chemical analyses, and Fernando Hiraldo (former director of EBD-CSIC) for his support. The study was funded by start-up funds from the Donana Biological Station (EBD-CSIC, Spain) and from Ikerbasque to LB, the Fundacao para a Ciencia e Tecnologia (FCT) strategic project ID/MAR/04292/2013 granted to MARE (Portugal), the 'BIOFUNCTION' project (CGL2014-52779-P) from the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER to LB and J. Pozo, and Basque Government funds (IT302-10) to J. Pozo

    Global Patterns and Controls of Nutrient Immobilization On Decomposing Cellulose In Riverine Ecosystems

    Get PDF
    Microbes play a critical role in plant litter decomposition and influence the fate of carbon in rivers and riparian zones. When decomposing low-nutrient plant litter, microbes acquire nitrogen (N) and phosphorus (P) from the environment (i.e., nutrient immobilization), and this process is potentially sensitive to nutrient loading and changing climate. Nonetheless, environmental controls on immobilization are poorly understood because rates are also influenced by plant litter chemistry, which is coupled to the same environmental factors. Here we used a standardized, low-nutrient organic matter substrate (cotton strips) to quantify nutrient immobilization at 100 paired stream and riparian sites representing 11 biomes worldwide. Immobilization rates varied by three orders of magnitude, were greater in rivers than riparian zones, and were strongly correlated to decomposition rates. In rivers, P immobilization rates were controlled by surface water phosphate concentrations, but N immobilization rates were not related to inorganic N. The N:P of immobilized nutrients was tightly constrained to a molar ratio of 10:1 despite wide variation in surface water N:P. Immobilization rates were temperature-dependent in riparian zones but not related to temperature in rivers. However, in rivers nutrient supply ultimately controlled whether microbes could achieve the maximum expected decomposition rate at a given temperature

    Sequestration and Scavenging of Iron in Infection

    Get PDF
    The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen

    Qualitative Research on Work-Family in the Management Field: A Review

    Get PDF
    Despite a proliferation of work-family literature over the past three decades, studies employing quantitative methodologies significantly outweigh those adopting qualitative approaches. In this paper, we intend to explore the state of qualitative work-family research in the management field and provide a comprehensive profile of the 152 studies included in this review. We synthesize the findings of qualitative work-family studies and provide six themes including parenthood, gender differences, cultural differences, family-friendly policies and non-traditional work arrangements, coping strategies, and under-studied populations. We also describe how findings of qualitative work-family studies compare to that of quantitative studies. The review highlights seven conclusions in the current qualitative literature: a limited number of qualitative endeavours, findings worth further attention, convergent foci, the loose use of work-family terminology, the neglect of a variety of qualitative research approaches, quantitative attitudes towards qualitative research, and insufficient reporting of research methods. In addition, implications for future researchers are discussed

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes
    corecore