179 research outputs found

    Virtues of Academic Exploration:

    Get PDF
    As many as 75% of college students change their major at least once during their undergraduate career (Gordon & Steele, 2015). This study examined the impact of academic major changes on bachelor’s degree attainment within six years. Using data from the 2012/17 Beginning Postsecondary Students Longitudinal Study (n = 13,800), we found a significant increase in odds of degree attainment for students who changed their major one or more times. Accompanying our analyses and results, we offer implications for early advising and transition programming including the role of meta-majors, and consideration for student backgrounds as they seek advising and choose majors

    Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)

    Full text link
    The Kepler mission discovered 2842 exoplanet candidates with 2 years of data. We provide updates to the Kepler planet candidate sample based upon 3 years (Q1-Q12) of data. Through a series of tests to exclude false-positives, primarily caused by eclipsing binary stars and instrumental systematics, 855 additional planetary candidates have been discovered, bringing the total number known to 3697. We provide revised transit parameters and accompanying posterior distributions based on a Markov Chain Monte Carlo algorithm for the cumulative catalogue of Kepler Objects of Interest. There are now 130 candidates in the cumulative catalogue that receive less than twice the flux the Earth receives and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen candidates meeting both criteria, roughly doubling the number of candidate Earth analogs. A majority of planetary candidates have a high probability of being bonafide planets, however, there are populations of likely false-positives. We discuss and suggest additional cuts that can be easily applied to the catalogue to produce a set of planetary candidates with good fidelity. The full catalogue is publicly available at the NASA Exoplanet Archive.Comment: Accepted for publication, ApJ

    Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)

    Get PDF
    \We present the sixth catalog of Kepler candidate planets based on nearly 4 years of high precision photometry. This catalog builds on the legacy of previous catalogs released by the Kepler project and includes 1493 new Kepler Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these candidates have best fit radii <1.5 R_earth. This brings the total number of KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many of these new candidates at the low signal-to-noise limit may be false alarms created by instrumental noise, and discuss our efforts to identify such objects. We re-evaluate all previously published KOIs with orbital periods of >50 days to provide a consistently vetted sample that can be used to improve planet occurrence rate calculations. We discuss the performance of our planet detection algorithms, and the consistency of our vetting products. The full catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement Serie

    A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase

    Get PDF
    AbstractSpectral and kinetic features of the redox intermediates of human recombinant unprocessed monomeric myeloperoxidase (recMPO), purified from an engineered Chinese hamster ovary cell line, were studied by the multi-mixing stopped-flow technique. Both the ferric protein and compounds I and II showed essentially the same kinetic behavior as the mature dimeric protein (MPO) isolated from polymorphonuclear leukocytes. Firstly, hydrogen peroxide mediated both oxidation of ferric recMPO to compound I (1.9×107 M−1 s−1, pH 7 and 15°C) and reduction of compound I to compound II (3.0×104 M−1 s−1, pH 7 and 15°C). With chloride, bromide, iodide and thiocyanate compound I was reduced back to the ferric enzyme (3.6×104 M−1 s−1, 1.4×106 M−1 s−1, 1.4×107 M−1 s−1 and 1.4×107 M−1 s−1, respectively), whereas the endogenous one-electron donor ascorbate mediated transformation of compound I to compound II (2.3×105 M−1 s−1) and of compound II back to the resting enzyme (5.0×103 M−1 s−1). Comparing the data of this study with those known from the mature enzyme strongly suggests that the processing of the precursor enzyme (recMPO) into the mature form occurs without structural changes at the active site and that the subunits in the mature dimeric enzyme work independently

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Unraveling the Early Events of Amyloid-β Protein (Aβ) Aggregation: Techniques for the Determination of Aβ Aggregate Size

    Get PDF
    The aggregation of proteins into insoluble amyloid fibrils coincides with the onset of numerous diseases. An array of techniques is available to study the different stages of the amyloid aggregation process. Recently, emphasis has been placed upon the analysis of oligomeric amyloid species, which have been hypothesized to play a key role in disease progression. This paper reviews techniques utilized to study aggregation of the amyloid-β protein (Aβ) associated with Alzheimer’s disease. In particular, the review focuses on techniques that provide information about the size or quantity of oligomeric Aβ species formed during the early stages of aggregation, including native-PAGE, SDS-PAGE, Western blotting, capillary electrophoresis, mass spectrometry, fluorescence correlation spectroscopy, light scattering, size exclusion chromatography, centrifugation, enzyme-linked immunosorbent assay, and dot blotting

    Cystatin C and Cardiovascular Disease

    Get PDF
    Background Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. Objectives The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. Methods We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. Results Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 × 10−14). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 × 10−211), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0.994), which was statistically different from the observational estimate (p = 1.6 × 10−5). A causal effect of cystatin C was not detected for any individual component of CVD. Conclusions Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD

    Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

    Get PDF
    BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765
    corecore