729 research outputs found

    The Antimicrobial Peptide, LL-37, Inhibits in vitro Osteoclastogenesis

    Get PDF
    Uncoupled bone resorption leads to net alveolar bone loss in periodontitis. The deficiency of LL-37, the only human antimicrobial peptide in the cathelicidin family, in patients with aggressive periodontitis suggests that LL-37 may play a pivotal role in the inhibition of alveolar bone destruction in periodontitis. We aimed to investigate a novel function of LL-37 in osteoimmunity by blocking osteoclastogenesis in vitro. Human osteoclast progenitor cells were isolated from a buffy coat of blood samples. The cells were cultured in the presence of various concentrations of LL-37 during an in vitro induction of osteoclastogenesis. Non-toxic doses of LL-37 could block multinuclear formation of the progenitor cells and significantly diminish the number of tartrate-resistant acid-phosphatase-positive cells and the formation of resorption pits (p < 0.05), whereas these concentrations induced cellular proliferation, as demonstrated by increased expression of proliferating cell nuclear antigen. Expression of several osteoclast genes was down-regulated by LL-37 treatment. It was demonstrated that nuclear translocation of nuclear- factor-activated T-cells 2 (NFAT2) was blocked by LL-37 treatment, consistent with a significant reduction in the calcineurin activity (p < 0.005). Collectively, our findings demonstrate that LL-37 inhibits the in vitro osteoclastogenesis by inhibiting the calcineurin activity, thus preventing nuclear translocation of NFAT2. Abbreviations: CALCR, calcitonin receptor; ClC-7, chloride-proton exchanger; CTSK, cathepsin K; DAPI, 4′,6-diamidino-2-phenylindole; EGTA, ethylene glycol tetraacetic acid; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; M-CSF/CSF1, macrophage-colony- stimulating factor; MMP-9, matrix metalloproteinase-9; MTT, [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]; NFAT2, nuclear factor of activated T-cells 2; PBS, phosphate-buffered saline; PCNA, proliferating cell nuclear antigen; PCR, polymerase chain reaction; RANK, receptor activator of nuclear factor kappa-B; RANKL, receptor activator of nuclear factor kappa-B ligand; RT-PCR, reverse-transcription polymerase chain- reaction; TBS, Tris-buffered saline; TCIRG1, T-cell, immune regulator 1, ATPase, H+ transporting, lysosomal V0 subunit A3; TRAcP, tartrate-resistant acid phosphatase

    Multifaceted effects of synthetic TLR2 ligand and Legionella pneumophilia on Treg-mediated suppression of T cell activation

    Get PDF
    Contains fulltext : 97133.pdf (publisher's version ) (Open Access)BACKGROUND: Regulatory T cells (Treg) play a crucial role in maintaining immune homeostasis and self-tolerance. The immune suppressive effects of Tregs should however be limited in case effective immunity is required against pathogens or cancer cells. We previously found that the Toll-like receptor 2 (TLR2) agonist, Pam3CysSK4, directly stimulated Tregs to expand and temporarily abrogate their suppressive capabilities. In this study, we evaluate the effect of Pam3CysSK4 and Legionella pneumophila, a natural TLR2 containing infectious agent, on effector T (Teff) cells and dendritic cells (DCs) individually and in co-cultures with Tregs. RESULTS: TLR2 agonists can directly provide a co-stimulatory signal inducing enhanced proliferation and cytokine production of naive CD4+ Teff cells. With respect to cytokine production, DCs appear to be most sensitive to low amounts of TLR agonists. Using wild type and TLR2-deficient cells in Treg suppression assays, we accordingly show that all cells (e.g. Treg, Teff cells and DCs) contributed to overcome Treg-mediated suppression of Teff cell proliferation. Furthermore, while TLR2-stimulated Tregs readily lost their ability to suppress Teff cell proliferation, cytokine production by Teff cells was still suppressed. Similar results were obtained upon stimulation with TLR2 ligand containing bacteria, Legionella pneumophila. CONCLUSIONS: These findings indicate that both synthetic and natural TLR2 agonists affect DCs, Teff cells and Treg directly, resulting in multi-modal modulation of Treg-mediated suppression of Teff cells. Moreover, Treg-mediated suppression of Teff cell proliferation is functionally distinct from suppression of cytokine secretion
    corecore