612 research outputs found
O(4) texture with a cosmological constant
We investigate O(4) textures in a background with a positive cosmological
constant. We find static solutions which co-move with the expanding background.
There exists a solution in which the scalar field is regular at the horizon.
This solution has a noninteger winding number smaller than one. There also
exist solutions in which scalar-field derivatives are singular at the horizon.
Such solutions can complete one winding within the horizon. If the winding
number is larger than some critical value, static solutions including the
regular one are unstable under perturbations.Comment: 25 pages, revtex, 6 eps figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Pressure head distribution during unstable flow in relation to the formation and dissipation of fingers
Wetting front instability creates a shallow induction zone from which fingers emerge that rapidly transport water and solutes downwards. How the induction zone affects finger location and spacing is unknown. In the moist subsoil, fingers may well dissipate because the finger tips no longer have to overcome the water entry value. Both flow regions were investigated in a two-dimensional chamber with a fine-over-coarse glass bead porous medium. A capillary fringe was created by upward wetting through capillary rise. Upon ponding with dye-coloured water, fingers emerged, propagated downward and diverged when reaching the capillary fringe. Microtensiometers were installed in the induction zone, the fingers, and in the capillary fringe. In the induction zone, a lateral sinusoidal pressure head developed within minutes. Only in one of two experiments could the observed pressure head pattern be satisfactorily reproduced by a steady-state model assuming uniform induction zone properties and uniform infiltration. Later, fingers emerged below the pressure head minima. The induction zone did not affect finger properties. The pressure head in the induction zone was determined by the depth of the finger tips. The water requirement of the fingers dictated the lateral pressure head gradients. The pressure heads in the capillary fringe supported the hypothesis that the flow stabilised and dissipated there
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Susceptibility to chronic mucus hypersecretion, a genome wide association study
Background: Chronic mucus hypersecretion (CMH) is associated with an increased frequency of respiratory infections, excess lung function decline, and increased hospitalisation and mortality rates in the general population. It is associated with smoking, but it is unknown why only a minority of smokers develops CMH. A plausible explanation for this phenomenon is a predisposing genetic constitution. Therefore, we performed a genome wide association (GWA) study of CMH in Caucasian populations. Methods: GWA analysis was performed in the NELSON-study using the Illumina 610 array, followed by replication and meta-analysis in 11 additional cohorts. In total 2,704 subjects with, and 7,624 subjects without CMH were included, all current or former heavy smokers (≥20 pack-years). Additional studies were performed to test the functional relevance of the most significant single nucleotide polymorphism (SNP). Results: A strong association with CMH, consistent across all cohorts, was observed with rs6577641 (p = 4.25x10-6, OR = 1.17), located in intron 9 of the special AT-rich sequence-binding protein 1 locus (SATB1) on chromosome 3. The risk allele (G) was associated with higher mRNA expression of SATB1 (4.3x10 -9) in lung tissue. Presence of CMH was associated with increased SATB1 mRNA expression in bronchial biopsies from COPD patients. SATB1 expression was induced during differentiation of primary human bronchial epithelial cells in culture. Conclusions: Our findings, that SNP rs6577641 is associated with CMH in multiple cohorts and is a cis-eQTL for SATB1, together with our additional observation that SATB1 expression increases during epithelial differentiation provide suggestive evidence that SATB1 is a gene that affects CMH
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
The Exact PRF-Security of NMAC and HMAC
NMAC is a mode of operation which turns a fixed input-length
keyed hash function f into a variable input-length function.
A~practical single-key variant of NMAC called HMAC is a very
popular and widely deployed message authentication code
(MAC). Security proofs and attacks for NMAC can typically
be lifted to HMAC.
NMAC was introduced by Bellare, Canetti and Krawczyk
[Crypto\u2796], who proved it to be a secure pseudorandom
function (PRF), and thus also a MAC, assuming that
(1) f is a PRF and
(2) the function we get when cascading f is weakly
collision-resistant.
Unfortunately, HMAC is typically instantiated with
cryptographic hash functions like MD5 or SHA-1 for which (2)
has been found to be wrong. To restore the provable
guarantees for NMAC, Bellare [Crypto\u2706] showed its
security based solely on the assumption that f is a PRF,
albeit via a non-uniform reduction.
Our first contribution is a simpler and uniform proof: If f
is an \eps-secure PRF (against q queries) and a
\delta-non-adaptively secure PRF (against q queries), then
NMAC^f is an (\eps+lq\delta)-secure PRF against q queries of
length at most l blocks each.
We then show that this \eps+lq\delta bound is basically
tight. For the most interesting case where lq\delta>=\eps
we prove this by constructing an f for which an attack with
advantage lq\delta exists. This also violates the bound
O(l\eps) on the PRF-security of NMAC recently claimed by
Koblitz and Menezes.
Finally, we analyze the PRF-security of a modification of
NMAC called NI [An and Bellare, Crypto\u2799] that differs
mainly by using a compression function with an additional
keying input. This avoids the constant rekeying on
multi-block messages in NMAC and allows for a security proof
starting by the standard switch from a PRF to a random
function, followed by an information-theoretic analysis. We
carry out such an analysis, obtaining a tight lq^2/2^c bound
for this step, improving over the trivial bound of
l^2q^2/2^c. The proof borrows combinatorial techniques
originally developed for proving the security of CBC-MAC
[Bellare et al., Crypto\u2705]. We also analyze a variant of
NI that does not include the message length in the last call
to the compression function, proving a l^{1+o(1)}q^2/2^c
bound in this case
Measurement of the reaction in deep inelastic scattering at HERA
The production of phi mesons in the reaction e(+)p --> e(+)phi p (phi --> K+K-), for 7 phi p cross section rises strongly with W. This behaviour is similar to that previously found for the gamma*p --> rho(0)p cross section. This strong dependence cannot be explained by production through soft pomeron exchange, It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small x. The ratio of sigma(phi)/sigma(rho(0)), which has previously been determined by ZEUS to be 0.065 +/- 0.013 (stat.) in photoproduction at a mean W of 70 GeV, is measured to be 0.18 +/- 0.05 (stat.) +/- 0.03 (syst.) at a mean Q(2) of 12.3 GeV2 and mean W of approximate to 100 GeV and is thus approaching at large Q(2) the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2×1051-2×1054 erg. © 2017 American Physical Society
- …
